StQlF*

LS-5 EX
LS-5 TT

APPLICATIONS MANUAL

88888888

Trademark acknowledgements

Macintosh, System 7, TrueType: Apple Computer Inc.

PostScript, Font Downloader: Adobe Systems Inc.

PageMaker: Aldus Corporation

HP, LaserJet, LaserJet 111, PCL, PCLS5: Hewlett-Packard Company
MicroSoft, MS-DOS, Windows, TrueImage: MicroSoft Corporation
IBM, IBM-PC: International Business Machines Corporation
Palatino, Helvetica, Univers: Linotype AG and/or its subsidiaries
Times, Linotron: Allied Corporation

Intellifont, CG Times: Agfa Corporation

ITC Avant Garde, ITC Bookman, ITC Zapf Chancery, ITC Zapf Dingbats: International Typeface Corporation
Times New Roman: Monotype Corporation plc.

¢ Al other brand names are trademarks or registered trademarks of their respective holders.

» All rights reserved. '

* Reproduction of any part of this manual in any form without the express permission of Star Micronics is for-
bidden.

© 1992 Star Micronics Co., Ltd.

TABLE OF CONTENTS

1. Introduction to the printer ... 1
1.1 The Printing ProCESScoveiereirimiiriirisenieieeeesteis s 1
1.2 EMUlationsooveieoenieieieeicecececcsccnit i 2
1.3 FOMES 1oitiiiiieeie ettt e 2
1.4 USEIr NEEAS covvireeeeieeieeeienrt et et 3
1.5 Binary, decimal and hexadecimal numbers.............................. 4
1.6 General adViCeooovivveeriinir e 5

2. Controlling the printerccocooiiiiii e 7
2.1 ONTINE .o 7
2.2 Program modec.cooiveiirireniiimieee e 8
2.3 The control panel..........ccccccooiiiiiiiiiniii 9
2.4 Printer SEUNES ...oooeeeeireeireie e eic i 11
2.5 Setting PATAMELETS ..c.covevievicieiiiieireieeeere et 12
2.6 Feeder Select oo 20
27 MOttt s 20
2.8 Selecting display 1anguageccooommieiieiiin i 20
2.9 Errors and Status MESSAZEScccoeovreiriirirreiimienneerseieniienannes 21
210 PCL ottt 21
2,11 Truelmage. ... 21
2.12 Hex dump modecccooiiiiiiiiiiiieiin s 22
2.13 Superset coMmMANAS........cccoiiiriiiiniiieieaie e 22
204 FONES 1ottt st 22

BuTFOMES oottt e 23
3.1 INrOdUCHION ..vvveeiciercci e 23
3.2 FONt QUITDULES ..oveeeeeieieeiieie et 27
3.3 Printer fONtS ...oooiiieieieeiieiiricei et 30
3.4 FONE SOUITEScovveiiieirerreeneeeriee et esieesse s sne e sae e 33
3.5 FONt SElECHON. .c..tivteie et 34
3.6 Special symbols and characters ..o 35
3.7 How applications use fonts..........ccooooioiiniiiinein, 36
3.8 Conclusion.......... RO OO P POV OP PP PRRPPIS 37

4. Printer Control Language ... 39

4.1 TNITOAUCTON. ... ce ettt 39

4.2 Printer control language commandsccoooviemiiiienenenne 40

4.3 Command fOrmMat.......ccccocvvvomirriiiiiiici e 42

4.4 The BUIET. oo e 43

4.5 The IMAZINAry CUSOTcooriimimrireiieteiei e 43

4.6 ThE PAZC..veieeiiieierieit e ceee et ea e 44

4.7 The PCL coordinate SyStem.........ccocoeevuiirrrneriiinieieacrisienccenns 47

4.8 The printing eNVIrONMENtc.coovieviieinenninintnnseeseeeeas 48

4.9 General printer control commandscccooviiniincinnnn 52

410 FONTS..uiiitieiee ettt e e et 75

411 GraphiCs ..oooeoreccreieticeencimeee e e 101

412 MACTOS wveevvieecaee et e ettt st 112

5. Vector SraphiCs ... 117
5.1 GL2 CONCEPES venveiiiiienieniere et 117

5.2 Managing GL2 mode from PCL mode.........ccccooeeiiiicnen. 119

5.3 GL2 SYNEAX.ctettireieeeiiieenr et 123

5.4 Programming with GL2.......ococoioiiiiii 125

5.5 GL2 graphics commandsccoooroiiieiennennnnn 127

6. TrUElIMAZE ..o 193
6.1 INrodUCHON. ...ceitiiiiie i 193

6.2 Truelmage print model ... 196

6.3 Coordinate SYSIEMScocoisiirmiimieicieeeietee e 198

6.4 Graphics StALE.....ccoeiiviiiiriiie it 199

6.5 Truelmage language features..........oooviinieniennneiniieenns 200

6.6 Fonts........coocveeieinns FE OSSP OTRSUIO PO 211

6.7 Graphic effects ..o 220

© 6.8 OPETALOTS. ...eiievimiie ittt e 223

7. Technical SUPPIEMENLc.ococooiiiiiiiiit e 293
7.1 Command SUMMATYcooeearreiiiriimiiniaiee e st sseninnncns 293

7.2 Character set tablescoooiioiiiicciiicir s 305

7.3 Resident font samplesccooeviiiiiciininee 335

GLOSSATY ...oviiee ettt 341
| 0171 0 SO U OO OO USSR O OTPSORPIPPIURPR PO 355

CHAPTER

Introduction to the
printer

This chapter is a general introduction to the printer, describing the capabili-
ties that it offers, previewing the various topics that are covered more fully
in the remaining chapters, and providing some general information that may
be useful and of interest to the reader.

1.1 The printing process

Data transferred to the printer is composed into pages by the printer’s inter-
nal software. When a complete page has been prepared in memory and is
ready for printing, it can be output.

The physical process of transferring a page of text and graphics from mem-
ory onto paper is carried out by the printer’s engine. The engine has a laser
beam that it can point, via a series of lenses and mirrors, onto the surface of
a rotating drum. Initially the entire surface of the drum has a positive electri-
cal charge. The laser beam scans back and forth across the drum, hitting the
drum’s surface at selected points under the control of the engine. Wherever
the laser beam hits the drum, that point on the drum is set to a neutral
charge. The laser builds up the page’s image on the drum as an array of neu-
trally-charged points.

As the drum rotates past the toner compartment, particles of black toner are
attracted to the electrically neutral spots on the drum. As the drum continues
to rotate it meets the paper. The paper has been negatively charged by a thin
wire, known as a corona wire. The paper and drum are pressed together,
attracted by their opposite electrical charge. High temperature, and pressure
applied by a roller mechanism, combine to fuse the toner to the paper thus
transferring the image from the drum onto the paper. The finished page is
then ejected.

This is a well-established process that produces consistent, high-quality out-
put, and which requires minimal maintenance.

1.2 Emulations

The LS-5EX printer model is supplied as standard with Hewlett Packard’s
Printer Control Language, PCL, in combination with the GL2 graphics lan-
guage. Truelmage, MicroSoft’s PostScript-compatible page description lan-
guage, is available on an optional board which can be installed in the LS-
SEX.

The LS-5TT is supplied as standard with both PCL and GL2, and Truelm-
age emulations.

PCL and PostScript are the two major worldwide small-computer system
printing standards; hence this printer offers a comprehensive solution to
home and office printing needs.

PCL/GL2 is the de facto standard for IBM PC word-processing and CAD
applications.

PostScript has revolutionized high-quality document and illustration pro-
duction, spawning an entire industry in the shape of desktop publishing.
Although closely associated with Apple Macintosh computers, PostScript
output can also be generated by IBM PC-based DOS and Windows applica-
tions, and those on a variety of other platforms.

Truelmage is an exact clone of PostScript, allowing any PostScript docu-
ment to be output as if on a PostScript printer. Truelmage’s inherent font
technology, TrueType, was pioneered by Apple as part of their System 7
operating system software, and has also been incorporated into Windows
3.1. Truelmage will also support any PostScript font.

Star’s implementations of PCL and Truelmage contain a number of
enhancements, that bring features such as paper tray-handling, paper-size
selection and emulation-switching under software control.

1.3 Fonts

As already mentioned, both emulations include a number of built-in fonts.
Further fonts may be obtained from commercial vendors in a variety of
forms: on disk, CD-ROM and cartridge (PCL only) and made available for
printing. Font cartridges simply plug in to the font cartridge slot. Disk or
CD-ROM based fonts should first be copied to the host computer’s hard disk
and then downloaded to the printer’s memory. Often applications download
the fonts they use automatically. However, failing this, utilities for the
express purpose of font-downloading also exist, and are often distributed
with commercial fonts.

Should you wish to create your own PCL or TrueType fonts, font creation
and modification is possible directly within PCL and Truelmage. However,
font creation applications are available commercially and represent a more
practical, simpler alternative.

1.4 User needs

Potential users of the printer range in a broad spectrum from normal users,
who simply wish to print their application documents, through more sophis-
ticated users, who also print from their applications but who sometimes
need to be able to exert a closer degree of control over the printing process,
to application developers, who develop software to drive the printer directly.

The first and second categories of user are well served by the immense range
of software applications that may be used with this printer, including word-
processors, spreadsheets, desktop publishing programs and illustration,
drawing and computer-aided design packages. Any software that will gener-
ate PostScript or print to any model in the HP LaserJet series will work with
this model.

Normal users will have little need of this manual, as all the operational
information they require will be contained in the Operations Manual accom-
panying this printer, and the reference manuals that accompany their appli-
cation packages. This application manual may be of interest to these users,
however, in demonstrating the correspondence between the internal methods
of page control/page description and the high-level commands and option
settings available to them in their applications.

The middle category of users (those who sometimes need to program their
own utilities, hand-craft graphic output, create custom fonts and other spe-
cial effects, or modify existing printable files) will find this manual a useful
source of reference in explaining the mechanisms of the emulation lan-
guages and the details of their commands. This category of users may
include desk-top publishers, font designers, system support staff, and any
other people whose specific goals entail a certain amount of programming.

The third category of users (those creating full-blooded applications) will
find this manual a comprehensive reference source for PCL, GL2 and True-
Image, which should enable them to generate output in a suitable form and
to create programs that drive the printer successfully.

1.5 Binary, decimal and hexadecimal numbers

When counting, people almost always use the decimal number system (base
10). In the decimal system the digits 0 — 9 are used to form numbers in
which each digit’s significance depends on its position in the number; by
convention each digit multiplies a value ten times greater than the digit to its
right. Hence the number 4523 is interpreted as:
(4x10x10x10)+(5x10x10)+(2x10)+(3x1).

4523 is simply the universally recognised form of the number.

Two more number systems that are of great importance in the world of com-
puters are the binary (base 2) and hexadecimal (base 16). All computers rep-
resent information internally in the form of binary numbers. In this system
the digits O and 1 are used, and each digit in a number multiplies a value
twice that of the digit to its right. Hence the number 10110 is interpreted as
(IX2X2X2X2)+(0x2Xx2X2)+(1x2x2)+(1X2)+(0x1).

In the hexadecimal system the digits 0 — 9 and A — F (or a — f) are used. A —

F represent the base ten values 10 — 15. Each digit in a number multiplies a
value sixteen times that of the digit to its right. Hence the number 9F3E
equals (9x16x16X16)+(15x16x16)+(3x16)+(14x1), which equals 40766 in
base 10.

Binary numbers can easily be converted to hexadecimal numbers, and vice
versa. To convert a binary number 10111110101101110 into hexadecimal,
first split it up into blocks of four binary digits (bits), 1 0111 1101 0110
1110, and then convert each block to its hexadecimal equivalent, in this case
17D6E. To convert a hexadecimal number to binary, simply convert each
hexadecimal digit to its binary equivalent, and then string together the
resulting binary values; hence A82 is made up of 1010 (A), 1000 (8) and
0010 (2). Thus the binary equivalent of A82 is 101010000010.

Since binary and hexadecimal numbers are so easily interchanged, hexadec-
imal notation is a good medium for bridging the the gap between the numer-
ical requirements of humans, who want to use numbers that do not contain
long strings of digits, and computers, which can only handle two states
internally: zero and one. Hence hexadecimal numbers are often used to
specify character codes, and are also used when the printer outputs the raw
data that it receives (in hex dump mode)

The .following table compares the three number systems.

Decimal Binary Hexadecimal || Decimal Binary Hexadecimal
0 0000 0 8 1000 8
1 0001 1 9 1001 9
2. 0010 2 10 1010 A
3 0011 3 11 1011 B
4 0100 4 12 1100 C
5 0101 5 13 1101 D
6 0110 6 14 1110 E
7 0111 7 15 1111 F

1.6 General advice

Personal computer technology is a fast-evolving, ever-changing field in
which new software products, capabilities and standards are announced
almost daily. To keep abreast of new possibilities, try to refer frequently to
industry magazines that cover Macintosh, IBM PC, desktop publishing and
related topics. These contain informative articles, latest product announce-
ments and many useful hints for solving problems, resolving incompatibili-
ties and generally getting the most out of your system. Similarly, on-line
bulletin boards are also a good source of relevant information, advice and
encouragement.

MEMO

CHAPTER

Controlling the
printer

The printer is controlled in two ways: either by software running on a host
computer, or by use of the printer’s control panel. Use of the control panel is
covered fully in the Operations Manual that accompanies the printer. A
short overview is given here. Software control of the printer is covered fully
in Chapters 4, 5 and 6 of this manual and is briefly touched on in this chap-
ter.

2.1 On-line

The printer is on-line when it is in a state capable of receiving commands
from a host computer and transforming them into printed output. On-line
should be the printer’s normal operational state. Changes can only be made
to printer settings via the control panel when the printer is off-line; this
avoids any conflict that might arise if the printer were able to receive host
data and control panel settings simultaneously.

A control panel button is used to set the printer on- and off-line, and a status
LED indicates the current state.

2.2 Program mode

When the printer is off-line, you can set and alter various parameters, such
as the current emulation, font selection, spacing, interface etc., to suit your
needs. In the main these settings are made in program mode. In program
mode you can step through menus of parameters and the range of their pos-
sible values, view their current settings and change them as appropriate. The
settings are grouped and organised hierarchically, as a “tree’. You can step
through available parameter options, go down to the leve! of sub-options, or

go up a menu level using the control panel arrow buttons.

SET DEFAULT FEED

[[] o
LOAD SET AUTO PRINT INTERFACE INPUT REP
FACTORY USER PAPER DENS}TY BUFFER

AUTO SELECTION APPLETALIC SERIAL PARALLEL FULL PARTIAL

PAGE PAGE
DTR ROBUST XCN PROTOCOL STOP PARITY DATA BAUD
POLARITY BIT BIT RATE

SOURCE

FRONT FEEDER
TRAY
SIZE [

D 1
EMULATION PAPER PAGE NUMBER QF
FEED SIZE COPIES

NUMBER
AUTO ENDOF VMl MARGIN ORIENTATION

LINEFEED LINE

POINT PITCH

MANUAL AUTO SET DEFAULT
MARGIN MARGIN
SYMBOL SET

TEXT TOP RIGHT LEFT
LENGTH MARGIN MARGIN MARGIN

TRUEIMAGE MODE ONLY

BHEE +r LASERUET 1 MODE ONLY

To enter program mode, press the button. This enables the ((822™),
(TEST), and buttons as arrow buttons. The Program mode

functions of these buttons is explained below.

2.3 The control panel

The control panel consists of an LCD screen, five status LED lights and eight
buttons. The LEDs provide information on the progress of printing jobs, and
the buttons are used to set the printer on- or off-line and to make printer set-
tings.

—— e s ——— e——

ERROR FEEDER
ONLINE PRINT SKP TEST RESET PROGRAM SELECT MODE

D CD T«) T« > o CCD
< > v A

2.3.1 LEDs

The LEDs’ significance is as follows:
On-line - lit when the printer is on-line, and not lit when it is off-line.

Print - lit when a page is in the process of being fed through the machine,
and unlit otherwise.

Data - lit or blinking when print data is being processed in the printer. If the
printer is powered off or reset while the data light is on (or blinking), data
will be lost.

Ready - lit when the printer is ready to receive data, irrespective of whether
the printer is on-line. The ready light blinks when the printer is warming up.

Alarm - lit when an error has occurred.

2.3.2 Buttons

The effects of pressing the control panel buttons are as follows:

ON LINE
sets the printer on-line and disables all other buttons (except, under certain
circumstances, the button).

PRINT
" causes any page data currently held in the printer to be printed out.

ERROR SKIP/ £

(i) if an error has been detected, checks again to see if the error condition
has been cleared, and if it has, restores the printer to a working state

(i1) in program mode pressing this button causes the next parameter or param-
eter value (depending on the current level) to be displayed on the LCD dis-

play.

TEST/ >

(i) prints a test sheet, or font list according to the current emulation setting
(ii) in program mode pressing this button causes the previous parameter or
parameter value (depending on the current level) to be displayed on the LCD
screen.

RESET /v

(1) holding down this button resets the printer to “Initial setting” values for
the current emulation. The term “Initial settings” is described in the follow-
ing section, ““Printer settings”.

(ii) in program mode, if a value is shown on the LCD display, pressing the
button selects the currently-displayed value as the setting for the current
parameter. If a parameter is displayed, pressing the button moves down a
level in the menu tree, either displaying the first in the next level of options,
or the first of the available values for the current parameter.

PROGRAM /~»

(i) enters program mode

(i1) in program mode pressing this button moves back up the menu tree, to
the next highest parameter group. If the current level is the highest level,
pressing the button exits program mode.

FEEDER SELECT
selects the paper feed.

MODE
selects one of two sets of user default printer settings (mode 1 or mode 2).

10

2.4 Printer settings

At any given time, the printer’s parameter settings, such as current emula-
tion, font selection, spacing, and interface, define how the printer will
respond to and interpret data and instructions it receives from a host com-
puter. There are several useful ways to store collections of settings and to
revert to them when necessary.

The are essentially four distinct collections of printer settings.

1) Factory settings. This is the group of settings programmed into the
printer at the factory. The factory default settings may be restored at any
time, and cannot be altered. There are two available versions of the factory
default settings: US and EC. Restoring the printer’s factory settings does not
affect the current emulation setting

2) User settings. This is the group of settings which take effect when the
printer is switched on or when a hard reset is performed (using the
button). There are two versions of the user default settings: mode 1 and
mode 2. The parameter values that comprise each mode are set and stored in
program mode. When the printer is first sent out from the factory, both mode
1 and mode 2 are the same as the EC factory default settings.

3) Inmitial settings. This is a single collection of printer and emulation set-
tings, consisting of all the currently effective control panel settings. Initial
setting parameter values are denoted on the LCD screen by an @ symbol.

On power-up, or after a hard reset, the initial settings take on the values of
the mode 1 default settings. Subsequent settings made using the control
panel become initial settings.

A soft reset (either made using the button, or received as a software
command from the host) causes all the current emulation’s parameter set-
tings to be reset to their initial setting values. Hence any that have been
changed by software commands from the host computer are changed back.
A soft reset does not change the current emulation. However, a hard reset
always restores the mode 1 user default emulation setting.

4) Current settings. These are the settings with which the printer is cur-
rently working, that is, a combination of the initial settings and settings
made by software commands in the current emulation. Virtually all parame-
ters.that can be set from the control panel can also be set in software. Hence,
settings such as current font selection or margin size, may have been deter-
mined by either method.

11

2.5 Setting parameters

The following settings are available in program mode. To enter program mode
first make sure that the printer is off-line, then press the button.
“Number of copies” appears on the display. Use the C< D/ buttons
to scroll through the list of available parameters, and the C_V > button to
select a parameter to be set. The parameters available depend on the current
emulation.

2.5.1 Number of copies

(HP LaserJet III emulation and TrueImage)

The first level of options allows you to select between “One” and “Multiple”
copies. Use the C <D/ buttons to display the options in turn, and
the CV_D button to select the option you require. To print a single copy,
select “One”; to select a number of copies select “Multiple”, then use the
<D/ buttons to display the number of copies you require, and
confirm your selection with the C_V_ button.

A single copy is the factory default setting.

2.5.2 Character

(HP LaserJet III emulation)

This feature allows you to set the current font. The behaviour of the control
panel C_V D button is slightly different in this option: pressing C_V O
makes a value selection and puts up a new menu. In other option menus it
does one of these but not both.

First specify the font you require by source (Resident font, Cartridge font or
downloaded “Soft” font); these are denoted by R, C and S respectively. Use
the C< D/ buttons to select the source, then confirm your selection
with the C_V D button. A new menu appears listing available fonts in the
selected source by number. Use the C_ <D/ buttons to step through
the available fonts until you reach the number of the font wish to select, then
press the C_V_ button to select it.

If the selected font is a bitmap font, a menu of available symbol sets is now
shown. Use the C< D/ buttons to select a symbol set, then confirm
your selection with the C_¥_ button.:

If you specified a scalable font, the font number menu is succeeded either by
a list of available point sizes (for proportionally-spaced fonts) or by a list of
available pitch settings (for monospaced fonts). Use the C< D/C > D
buttons to select a point size or pitch setting, then confirm your selection
with the C°V_ D button. A list of available symbol sets is now displayed.
Select one as described above.

If a soft font is selected, the character setting is not stored when a “Set user
default” setting is made.

12

2.5.3 Page size

The following page sizes are supported.

Paper Envelope

Letter Monarch

Legal COM-10

A4 International DL
B5 International C5
Executive

Use the C< D/ buttons to display the options in turn, and the
(Y D button to select a page size. If you select A4 size in HP LaserJet 111
emulation mode, a further option menu appears, offering a choice of “Right
End” widths of either 77 or 80. This selects a printable area width of 7.7" or
8.0". Use the C < /C_> O buttons to select a width, then confirm your
selection with the C_V_ button.

The factory default setting page size is Letter for US, and A4 with a print-
able area width of 7.7" for EC.

2.5.4 Layout

(HP LaserJet Il emulation)

The layout menu offers five different options which you can modity: Page
orientation, Margin settings, VMI (the height of a line of text), End of line
(text wrap), and Auto line feed. Use the C_< D/ buttons to scroll
through the list of available options, and the C_¥Y_ button to select the one
you wish to modify.

The available orientation options are Portrait (the factory default) and Land-
scape. Use the C <D/ buttons to display the one you wish to select,
and the C_V_D button to confirm your selection.

The Margin menu allows you to select between “Default margin” and “Set
margin”. Select an option by displaying it with the C_< D/ buttons,

. and pressing (_V . The default margins are determined by the current

font selection, orientation and emulation settings.

13

If you select “Set margin”, a further menu appears, detailing the margin
parameters that can be set: left margin, right margin, top margin and text
length. Use the C < D/ buttons to step through the parameters to
the one you want to set, and press the C_V_ button. The parameter’s cur-
rent value is displayed. Step through the available values using the C"<"D/
buttons and make your setting using the C_V_D button. The range
of values available depends on the current orientation, VMI and character
pitch.

The available End of line options are “Auto-wrap off” (the factory default)
and “Auto-wrap on”. Use the C < D/ buttons to display your
choice, and the C_Y_ button to select it.

The VMI menu allows either “Auto selection” or “Manual selection”. Select
either by displaying it with the (< D/ buttons, and pressing
(¥ . If you selected manual selection, the current VMI setting (in 1/48")
is displayed. Use the C <D/ buttons to step through the available
settings until you reach the value you want, then press the C_V_ button to
set the VMI to your chosen value. The factory default setting is a manual
VMI of 8; equivalent to 6 lines of text per inch.

If Auto VMI is selected, the Text length in the Set margin menu setting
determines the VMI. However, the current manual VMI value is retained for
future use, in case manual VMI is reselected.

The Auto line feed options are “CR=CR” (the factory default) and
“CR=CR+LF”. Use the (< D)/C>" buttons to select one, and the
(Y button to confirm your choice.

14

2.5.5 Paper feed

This menu allows you to select the paper feed source, and to designate the
size of paper fed from the front tray. First use the C<" D/ buttons to
display either “FEEDER” and “FRONT TRAY SIZE”, and the C VD but-
ton to select the option you wish to set. The available feeder options are:

Cassette only

Auto Selection

Cassette

Lower cassette

Front tray

Manual

The available front tray sizes are:

Letter Monarch

Legal COM-10

A4 International DL
B5 International C5
Executive

In each case use the C< D/ buttons to scroll through the list of
available options, and the C_V_ button to make your choice.

If the optional lower cassette unit is installed, selecting “Cassette only” as
the feeder option displays a further sub-menu, with the options “Substitute”
and “Normal”. If “Substitute” is selected, subsequent <ESC>&/ 1H and
<ESC>&/4H commands from a host computer will select the lower cas-
sette; if “Normal” is selected, <ESC>&Z/1H and <ESC>&/4H will select
the standard cassette. Use the (< D/ buttons to display the option
you wish to select, and the C_¥_ button to confirm your choice.

The factory defauit feeder setting is Cassette only. The factory default front
tray size is A4, however, loading the factory settings will not alter the cur-
rent tray size setting.

15

If the selected feeder option is “Cassette only”, the Front tray size menu is
not shown and the host command <ESC>&/1H cannot be used to select the
Front tray.

If “Auto selection” is the feeder option, host commands specifying a paper
size will cause commands that designate a paper source to be disregarded.
The paper feed source can also be selected using the Feeder select control
panel button.

Only physically available options are shown on the LCD display menu.

2.5.6 Emulation

On the LS-5EX the available options are HP LaserJet III mode and Hex
dump mode (for debugging). If a Truelmage board has been installed, True-
Image will also be available.

On the LS-5TT the available options are HP LaserJet 11l mode, Truelmage
mode and Hex dump mode.

Use the (”<D/C > buttons to scroll through the list of available
options, and the C_V_ D button to select the emulation you require. Per-
forming a factory reset does not change the selected emulation. The newly
selected emulation is marked by an @ symbol.

The factory default emulation is HP LaserJet III on the LS-5EX, and True-
Image on the LS-5TT.

2.5.7 Printer commands

(HP LaserJet I1I emulation)

The available options are PCL+GL2 (the factory default) and GL2 only.
Selecting GL2 only causes PCL commands to be disregarded. Use the
</ buttons to display the options in turn, and the CV_ but-
ton to select the option you require.

2.5.8 REP

(HP LaserJet Il emulation and Truelmage)

REP (Resolution Enhancement Procedure) enables 300x600 dots per inch
printing, and can be turned off or on. Use the C <D/ buttons to dis-
play the options in turn, and the C V"D button to select the option you
require.

With the standard memory configuration (1MB on the LS-5EX, 2MB on the
LS-5TT), REP is unavailable if Page mode has already been set to Full page.

If extra RAM has been installed, Full page and REP may both be selected.

16

2.5.9 Page mode

(HP LaserJet I1I emulation and TrueImage)

The available options are “Partial page” and “Full page”. “Full page” mode
offers a further choice between Letter or A4 page size (the factory default)
and Legal page size. Use the (< D/C_> D buttons to display the page
mode you require, and then press the C_V_ button. If you have selected
“Full page” mode, use C< D/ to choose a page size and confirm
your selection with the CV_D button.

With the standard memory configuration (1MB on the LS-5EX, 2MB on the
LS-5TT), Page mode will be unavailable if REP has already been selected.

If extra RAM has been installed, Full page and REP may both be selected.

Subsequently selecting Hex Dump mode will not alter the page mode set-
ting.

2.5.10 Input buffer
This setting determines the size of the buffer used to store in-coming data.
The buffer can be set to 1k (the factory default) or 128k. Use the C < D/
buttons to display the options in turn, and the C_V) button to
select the option you require.

2.5.11 Interface

This option allows you to set up the interface between the host computer and
the printer.

The LS-5EX and LS-5TT are both equipped with a Centronics parallel
interface, an RS-232 serial interface and an AppleTalk interface. However,
the LS-5EX’s AppleTalk port is only enabled if a Truelmage board has been
installed. The parallel and serial interfaces may both be connected at the
same time, however, only one can be active at once.

The interface menu offers four options: Parallel, Serial, AppleTalk (LS-5TT
or LS-5EX with TrueIlmage board only) and Auto. Use the C <"/
buttons to scroll through the list of available options, and the C_V_ button
to select one.

If you select Serial or Auto, a further menu appears, listing the serial data trans-
fer parameters that must be set: baud rate, data bit, parity, stop bit, protocol,
robust-XON and DTR polarity. Use the (< D/ buttons te step
through the parameters to the one you want to set, and press the C_V_ button.

17

The parameter’s current setting is shown. Step through the available settings
using the C <D/ buttons and select a value using the C_V_ button.
The range of available settings is shown below.

INTERFACE

|
L]

AUTO APPLETALK SERIAL PARALLEL
SELECTION

L

1 1 1]]

DTR ROBUST XON PROTOCOL STOP BIT PARITY DATA BIT BAUD RATE
POLARITY I I I
HIGH OFF DTR 1 NONE 7 300
LOW ON XON/XOFF 2 OoDbD 8 800
COMBINATION EVEN 1200
IGNORE 2400
4800

9600
19200
38400

Parallel is the factory default interface setting.

2.5.12 Print density
This setting controls the relative lightness or darkness of printed output. The
following print density settings are available:

Dark

Semi dark

Medium

Semi light

Light

Use the C < D/C > D buttons to display the options in turn, and the
(YD button to select the setting you require.
The factory default setting is medium.

18

2.5.13 Auto paper feed
This feature allows you to set an interval at which paper will automatically
be fed into the printer. The available settings are:

Off

30 seconds

60 seconds

180 seconds

Use the C_ <D/ buttons to display the setting you require, and the
(¥ button to confirm your selection. The factory default setting is
“Off”.

2.5.14 Set user default

This menu allows you to assign the present initial settings to one of the two user
default sets: mode 1 or mode 2. Initial settings are indicated by an @ next to the
value on the LCD display. On power-up or after a hard reset, the printer always
adopts the parameter values of mode 1. The user default settings of mode 1 or
mode 2 can be made the current settings at any time, using the button.
Use the C <D/ buttons to display “Mode 17 or “Mode 2” (which-
ever you wish to set) and the C_Y_D button to assign the initial settings to
the chosen user default mode.

2.5.15 Load factory set

This option allows you to restore all parameter settings to their factory
default values. Either the EC or US factory default set may be selected. The
current and initial settings are set to those of the selected factory default set.
Use the C <D/ buttons to display “US Set” or “EC Set” (which-
ever you wish to use) and the C_Y_D button to restore the factory settings.
The current emulation setting is not affected.

19

2.6 Feeder select

The button provides an alternative method of selecting the paper
source and Front tray paper size. The options available are as described in
the program mode section under the Paper feed parameter.

To select the paper source using the button, first make sure that the
printer is off-line, press the button repeatedly until the chosen paper
source is selected, and then press the button to confirm your selec-
tion and put the printer back on-line.

To select the front tray paper size hold down the button for 2 sec-
onds until the display shows the current front tray paper size. To select a
new setting, press the button repeatedly until the chosen paper size
is selected, and then press the (ONLINE), CTEST), (RESET) or (PROGRAM) button to
confirm your selection.

2.7 Mode

You can select the mode 1 or mode 2 user default settings as follows. Make sure
that the printer is off-line, then press the button. The three available
options are: No change, Mode | and Mode 2. Press until the option you
require is displayed, then press the (ONLINE), (TEST D or (BESED button. If you
select No change, no action is taken. If you select Mode 1 or Mode 2, the set-
tings stored as the mode 1 or 2 user default set are copied to the initial and cur-
rent settings.

2.8 Selecting display language

To select the language to be used on the LCD display, switch on the printer
while holding down the (RESET button. Keep the button held down
until the message “Select language” appears on the LCD display. Use the
(52220 and (JTESTD buttons to step through the selections to the language of
your choice, and the button to confirm your selection. Finally press
the button to save the new setting and put the printer back on-line. If
you press without having pressed (RESETD, the original display lan-
guage is retained. The languages available are: English, French, German,
Italian and Spanish. The factory default setting is English.

20

2.9 Errors and status messages

Error messages and status messages are displayed on the LCD screen. Some
error conditions can be cleared by pressing the button. In other
cases, some form of intervention will be necessary, e.g. a paper jam will
have to be cleared by hand. A full list of errors and alarms is given in the
Operations Manual.

2.10 PCL

The PCL and GL2 languages control the printer when it is in HP LaserJet I11
emulation mode. These languages provide a wide range of commands,
including commands that can set most of the parameters available on the
control panel. The printer’s current settings are generally a combination of
its initial settings and settings made by software. The Printer commands
parameter in program mode allows you to limit the printer to interpreting
GL2 commands only. The PCL and GL2 command languages are described
in chapters 4 and 5 of this manual.

2.11 Truelmage

Truelmage is a page description language based on, and compatible with,
Adobe System Inc’s PostScript. The printer’s Truelmage interpreter is capa-
ble of generating output from both Truelmage and PostScript page descrip-
tion programs.

The Truelmage language consists of a comprehensive range of operators
that can describe the appearance of text and graphic material on the printed
page. The language also contains operators that can make the most of the
parameter settings available from the control panel. Star have added a num-
ber of extensions to Truelmage to enable paper size selection and tray selec-
tion. Hence programmers can enable applications to manage Truelmage
output with a high degree of flexibility. Truelmage is described in Chapter 6
of this manual.

21

2.12 Hex dump mode

Hex dump mode is a special printer mode in which all data received by the
printer is simply printed as a sequence of hexadecimal numbers. The printer
does not attempt to interpret the in-coming data as emulation language com-
mands or as graphics or character data. For debugging purposes, Hex dump
mode can be a useful option, as it enables the user to examine the raw data
generated by an application program or page description program. Hex
dump mode is available as an emulation setting within program mode.

2.13 Superset commands

Four escape sequence commands, <ESC>[Cn (Select feeder), <ESC>[En
(Change emulation mode), <ESC>[On (Select orientation), and <ESC>[Sn
(Select paper size), are recognised in any emulation, HP LaserJet 111, True-
Image and Hex dump. This allows any of these four functions to be per-
formed by software at any time (provided that the printer is on-line).

2.14 Fonts

Fonts are described in detail in chapter 3. Fonts are available from several
sources: resident fonts that are already installed in the printer, cartridge fonts
that plug into the printer’s cartridge slot (for HP LaserJet III mode only),
and downloadable (soft) fonts. Soft fonts are sent to the printer from a host
computer. The transfer process is known as downloading. This can be per-
formed using a downloader application (such as Font Downloader on the
Macintosh). Nowadays, however, many applications programs that use text
(such as DTP packages) automatically download fonts as necessary.

Soft fonts are normally purchased, either on floppy disk or on CD ROM,
transferred to the host computer’s hard disk, and then downloaded to the
printer. However, soft fonts may also be created by the user on a computer,
either using a commercial application designed for that purpose, or by using
the appropriate features in PCL or Truelmage. This latter method, however,
is liable to be time-consuming and may not yield satisfactory results. In
some cases, however, it may be appropriate, for example, if a small number
of otherwise unavailable special symbols is needed.

22

CHAPTER

Fonts

3.1 Introduction

Most printing work involves the production of text. The most basic unit of
text is the single character. To facilitate text-handling characters are grouped
into fonts, in which all characters have a consistent appearance. A know-
ledge of fonts and the basic principles of typography is a useful asset, and
will also help you understand the way in which the printer handles text.

3.1.1 Definition of a font

A font is a collection of characters of a particular design and size. The
design is known as the typeface. There are thousands of different typefaces
in existence. Commonly-used typefaces include Times, Palatino, Helvetica,
Univers and Courier. A font may also consist of further modifications to the
basic typeface design, for example the characters may be bold or italic.
Typefaces are usually the product of meticulous and pains-taking effort by a
typographic artist who has designed the shape of each character so that the
overall effect of text in the font is pleasing to the eye and easy to read.

3.1.2 Typeface families

Fonts are often used or distributed as “families”, groups of fonts that are
variations on a single typeface design and that combine together well. For
example, Times, Times Bold, Times Italic and Times Bold Italic may com-
prise a family, or alternatively Garamond, Garamond Light, Garamond Italic
and Garamond Light Italic. There are numerous ways in which a basic type-
tace design can be modified; these are described in the “Font attributes™ sec-
tion which follows. '

23

3.1.3 Character features

There are several features of character shape and spacing that affect text
placement and appearance. The characters that make up a line of text sit on
an imaginary line known as the baseline. Most characters, such as ‘M’, ‘F’
and ‘r’, sit squarely on the baseline. Some characters, such as ‘y’ and ‘g’
extend below the baseline, while others, such as ‘1’ and ‘k’, extend above
most other characters, and up close to the baseline of the text line above.
The part of a character that goes below the baseline is known as a descender;
the part that extends upwards is known as an ascender. Leading is the verti-
cal distance between successive lines of text and is measured from baseline
to baseline.

Ascender

Mmmmn
Descendsr JQXJUHJQQILQALQL Baseline

\\
Leading is measured between
successive baselines

As well the character’s shape, the design of a character in a font includes
information that describes how it will be positioned relative to adjacent
characters.

Character Next
origin character
origin
Bearing — > [—
Character
width

24

The origin of a character is a reference point that defines how the character
is positioned relative to the text baseline, and to the preceding character.

A character’s width defines the distance between its origin and the position
of the origin of the character which follows. This distance is greater than the
actual width of the character’s shape.

A character’s bearing is the horizontal distance between the left-most part of

the character and its origin.
The width and bearing are designed so that adjacent characters are spaced

attractively.

3.1.4 Character shape and readability

Some typefaces, for example Times and Palatino, have small curly hooks on
the ends of the lines that form the characters. These hooks are known as ser-
ifs and make body text more readable by leading the eye on from one letter
to the next. Other typefaces, for example Univers and Helvetica, do not have
these hooks and are referred to as sans serif (without serif) typefaces. Char-
acters in these typefaces stand out on their own better. Generally fonts with
serif typefaces are used for body text and sans serif typefaces are used for

headings and captions.

14
Helvetica ‘!/ / Times
(Sans serif) ,‘// (Serif)
Serifs

25

3.1.5 Document design

Advances in personal computer and laser printer technology have brought
high-quality document production within easy reach of anyone with access
to a PC and a laser printer. Document design is largely a matter of personal
preference, however, there are a few basic guidelines that should be fol-
lowed.

Do not be tempted to use too many different fonts in a single document, and
in particular, on a single page.

In general, use smaller-sized serif fonts for body text and larger sans serif
fonts for headings, captions, titles and any text that is to stand out promi-
nently.

Choose typefaces that work well together. This, too, is to some extent a mat-
ter of taste, and experience and experimentation will help you develop good
judgement in this matter.

If your software allows, enforce consistency in a document by using para-
graph styles. Most desktop publishing packages and word-processors now
support this feature. Using this method, you define a number of fixed font
formats and assign names to them, e.g. you might define a paragraph style
“BodyText” to be 10 point Times Roman. Every time you set a piece of text
to be BodyText, it is automatically formatted as 10 point Times Roman.

If your software allows, define document master pages. These are page tem-
plates onto which you can place the text and graphic elements of your docu-
ment. This method also helps to lend your documents a consistent
appearance.

26

3.2 Font attributes

The word “font” is used in a variety of contexts, and is open to a number of
different interpretations. For our purposes here, however, a font is a collec-
tion of characters with a specific set of attributes. When emulation software
(PCL, GL2 or Truelmage) selects a font for printing, the font is usually
identified as a specified collection of some or all of these attributes, e.g. 12
point Univers Bold Italic. Font attributes are as follows.

3.2.1 Typeface

The typeface of a font is the design style of the characters. Typeface lends a
font its distinctive appearance. The printer has fonts in several typefaces per-
manently resident in its ROM (read-only memory). Some examples of dif-
ferent typefaces are shown below.

Courier
Palatino
Bookman
Univers
Helvetica
ﬂmﬁdz&/e ‘s’w‘?bt
3.2.2 Spacing type

Fonts are either monospaced (fixed) or proportionally-spaced. The spacing
type of a font is inherent in the typeface. Of the typefaces listed above, Cou-
rier fonts are monospaced, and the rest are proportionally-spaced.

The characters of a monospaced font all have equal width, and so occupy an
equal amount of space on a line. The characters of a proportionally-spaced
font take up varying amounts of space depending on each individual charac-
ter’s design. As a result of this, two different sentences that contain the same
number of characters will occupy the same width if printed using a mono-
spaced font, but will usually have different widths if a proportionally-spaced
font is used.

An example sentence in Courier.
Identical number of characters.
An example sentence in Bookman.
Identical number of characters.

27

3.2.3 Height

The height or point size of a font is the maximum vertical distance that a
single line of text might occupy on the page. Height is measured in typo-
graphic points (1/72") and is the vertical distance between the top of the
font’s highest ascending character, (for example the lowercase 1) and the
bottom of its lowest descender (for example the lowercase ‘p’). The highest
ascender and lowest descender depend on the typeface design.

Font height is
measured from
ascender to
descender

\

- The quick!brown fox

Baseline

3.2.4 Pitch

The pitch of a monospaced font is the number of characters printed per inch.
Proportionally-spaced fonts do not have a pitch attribute, since different
characters have different widths.

3.2.5 Weight

Font weight is the thickness of the lines which make up the font's characters.
The standard weight is known as medium. Bold fonts, with thicker lines, are
also commonly used. Bold text is often used for emphasis or for headings.
Light stroke weight fonts have lines that are narrower than the standard
weight. Some examples of different stroke weights are shown below.

Univers Light
Univers Medium
Univers Bold
Univers Black

28

3.2.6 Posture

A font’s posture attribute refers to whether it is upright or italic (oblique).
Ttalic text is often used to make particular words or text stand out from the
surrounding body text.

Upright text
Italic text

3.2.7 Width

Some fonts are designed as variations on a basic typeface design, but with
the character width reduced or enlarged. These types of fonts are generally
referred to as condensed (or compressed) and extended.

Ordinary Univers Bold
Condensed Univers Bold

3.2.8 Symbol set

The symbol shapes that a font can display may be varied to meet different
printing needs. Most fonts normally use a standardised set comprising
upper- and lowercase letters, numerals and punctuation symbols, plus a few
extra symbols. However, Symbol or Dingbat typeface fonts use completely
different sets of symbols, including bullets, geometric shapes, arrow charac-
ters and Greek letters.

Roman-8
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvw
xyz()123456789-:[];’,./!@#$%"&*()_+{ }r>- LT

Symbol
ABXAE®THIOKAMNOITOPITY cCQEYZo By SedymioxAuvondpo
TWB0EY(0123456789—=[;I L,/ !=#3% L&*()_+{}:©<>?L
£M[]"30+®©

Dingbats

Lxefefosfoats 4 <> Vi @A e i e Ve KK O M R @ Ookskaleslesk
#¥%Q@OMITUTAV &Il o /v XRXXF 2otk > Qe
S-SR TRO @) = Gpre oD > &

29

3.3 Printer fonts
3.3.1 PCL

In HP LaserJet III mode fonts are either bitmap or scalable.

Bitmap fonts

Each character in a bitmap font is defined as a matrix of dots that the printer
prints on the page. As a result, bitmap fonts are available in particular point
sizes only. For example, the printer contains resident Courier 10 point and
12 point fonts. You can print using Courier 10 or 12 point at any time, sim-
ply by selecting the appropriate font. However, if you want to print using
Courier 16 point, Courier 16 point must first be made available to the printer
either on a cartridge or as a soft font downloaded from a host computer.

Scalable fonts

Each character in a scalable font is defined as an outline shape. The printer
converts the outline shape to a matrix of dots that forms the printed charac-
ter. Hence, scalable fonts are available in any size. For example, the printer
contains a resident Univers scalable font. To print using a Univers font of
any size, simply select the Univers typeface and specify the size you require.
The printer automatically scales the characters to the selected size. Scalable
fonts can be scaled to any size from 3 points to 999.75 points, in increments
of 0.25 points.

Resident printer fonts

The fonts that are available in HP LaserJet III emulation are listed below.
There are 8 scalable typefaces and 14 bitmap fonts; each of the bitmap fonts
listed is available in both portrait and landscape versions. Although the
printer can automatically rotate any font to fit the current page orientation,
the rotated font will take up printer memory space. Thus resident fonts in
different orientations can help save memory.

Samples of each font are included for reference in the Technical Supplement
at the end of this manual.

30

Scalable Bitmap

Univers Medium Courier 10-point (12 characters per inch)

Univers Medium Italic || Courier Bold 10-point (12 characters per inch)

Univers Bold Courier Italic 10-point (12 characters per inch)
Univers Bold Italic Courier 12-point (10 characters per inch)

CG Times Courier Bold 12-point (10 characters per inch)

CG Times Italic Courier Italic 12-point (10 characters per inch)
CG Times Bold Line Printer 8.5-point (16.6 characters per inch)

CG Times Bold Italic

3.3.2 GL2

In GL2 graphics language mode any font available in PCL mode may be
selected. Additionally, GL2 has its own stick font, comprised purely of
lines. This font is suitable for use in technical drawings, and is described in
chapter 5.

3.3.3 Truelmage

TrueImage has its own native font format, known as TrueType. TrueType is
also an integral part of the Macintosh System 7 and MicroSoft Windows 3.1
operating systems. TrueImage can also use PostScript fonts. TrueType fonts
define their characters as a set of outline shapes that can be scaled to any
size. A Macintosh running system 7 or a PC running Windows 3.1 will have
access to TrueType fonts that are part of its system software. The computer
can automatically scale these fonts and send them to any printer. This laser
printer contains 35 resident TrueType fonts.

31

TrueType

The printer contains the following TrueType fonts. These fonts can be used
at any time. QOutput that uses any of these fonts will be produced more
quickly, since the host computer is spared the task of sending the font to the
printer. Samples of each font are included for reference in the Technical
Supplement at the end of this manual.

Arial Courier ITC Zapf Chancery
Medium [talic

Arial Bold Courier Bold ITC Zapf Dingbats

Arial Oblique Courier Oblique Symbol

Arial Bold Oblique | Courier Bold Oblique Times New Roman

Arnial Natrow

ITC Avant Garde Gothic Book

Times New Roman Bold

Arial Narrow Bold

ITC Avant Garde Gothic Demi

Times New Roman

Italic
Arial Narrow ITC Avant Garde Gothic Book | Times New Roman Bold
Oblique Oblique Italic

Arial Narrow
Bold Oblique

ITC Avant Garde Gothic Demi
Oblique

Zapf Calligraphic
Roman

Century School-
book Roman

ITC Bookman Light

Zapf Calligraphic Bold

Century School-
book Bold

ITC Bookman Light Italic

Zapf Calligraphic Italic

Century School-
book Bold Italic

ITC Bookman Demi

Zapf Calligraphic Bold
Italic

Century School-
book Italic

ITC Bookman Demi Italic

PostScript

PostScript Type 1 or Type 3 (user-defined fonts) can be used in Truelmage
mode. PostScript fonts are also defined as character outlines. The Truelm-
age interpreter included with the printer scales the outline to produce char-
acters of the required size.

32

3.4 Font sources

The printer can use fonts from three different sources: its own internal fonts,
as listed in the preceding section, fonts that have been downloaded from a
host computer, and fonts on a cartridge plugged into the printer’s cartridge
slot. (Cartridge fonts are only available in HP LaserJet III emulation mode).

3.4.1 Resident fonts

These are listed in the preceding section. These fonts are permanently resi-
dent in the printer’s ROM (Read-only memory) and thus are always avail-
able for selection. Documents that use the internal resident fonts will
generally print faster than documents that require fonts to be downloaded.

3.4.2 Downloaded (soft) fonts

Fonts can be downloaded from the host computer to the printer. There is a
vast number of fonts available for both HP LaserJet III and Truelmage
modes. Fonts can be purchased on floppy disk and on CD-ROM. Copy them
to your computer’s hard disk and then download them to the printer. Down-
loaded fonts reside in the printer’s RAM (Random Access Memory). The
process of downloading will depend on the host computer and the software
being used. Downloading is discussed is the section “How applications use
fonts” on page 36 of this chapter.

Since the printer also uses its memory to compose pages prior to outputting
them and also to store other necessary information, too many downloaded
fonts may slow the printer down, or even prevent it from printing complex
pages. It is good practice to regulate the number of soft fonts in the printer at
any given time.

3.4.3 Cartridge

In HP LaserJet III modes fonts may be installed on cartridge. To make car-
tridge fonts available to the printer simply plug the cartridge into the car-
tridge slot. The fonts on the cartridge are then available for selection, just as
if they were resident in the printer, or had been downloaded into printer
memory. The advantage of cartridge fonts is that they do not consume any of
the printer’s resources. Also, a cartridge font may be selected as the mode 1
or mode 2 user default font. Provided that the cartridge remains in the
printer it will be restored as the user-default font when a hard reset is per-
formed.

33

3.5 Font selection

So far in this chapter we have described ways in which fonts become avail-
able for selection, but have not described exactly how they may be selected.
As far as the average user is concerned, printer fonts will usually be selected
automatically by the applications software running on the host computer.
However, the explicit selection process depends on the printer mode as fol-
lows:

3.5.1 HP LaserJet lll mode

A font may be selected as the current font using the printer’s control panel.
This is described in detail on page 12 of Chapter 2 of this manual. Text doc-
uments that contain no font selection information will be printed using this
default font.

Software applications select printer fonts using PCL escape sequence com-
mands, either specifying font attributes or a unique font ID number. This
process is described in detail on page 77 of Chapter 4 of this manual.

3.5.2 Truelmage mode

Truelmage fonts cannot be selected from the control panel. Applications
that enable Truelmage output and Truelmage page description programs
select TrueType and PostScript fonts using the Truelmage font operators.
These are described in the section Font operators starting on page 260 of
Chapter 6.

34

3.6 Special symbols and characters

A typeface may comprise designs for many different characters. In addition
to the standard upper- and lowercase letters, numerals and punctuation sym-
bols, there are also currency signs, mathematical symbols, foreign-language
accented characters, Greek letters and various others that may be needed
from time to time. A printer font can usually represent a maximum of 256
different characters at any one time, as defined by its associated symbol set.
Symbol sets are normally designed for a specific purpose, for example to
print text in a particular language.

When the need arises, it is easy to switch symbol sets in order to gain access
to new characters. In HP LaserJet [II mode this may be done in software
using escape sequence commands. For example, if you are printing a docu-
ment that is mostly in French but contains quotations in German, you would
first select the ISO69:French symbol set with the appropriate command,
switch to the HP German symbol set at the appropriate points in the docu-
ment, and then revert to the French set after printing each quotation. In this
way, both French and German accented characters will appear properly.
PCL symbol set selection commands are described on page 81 and 82 of
Chapter 4.

PCL symbol set switching can also be performed from the control panel, as
described in Chapter 2 on page 12.

The symbol sets available with the printers resident PCL fonts are given for
reference in the Technical Supplement at the end of this manual.

The method in which different symbols can be selected in Truelmage mode
is outlined in Chapter 6 on page 218.

35

3.7 How applications use fonts

The way in which applications and fonts interact depends on the hardware
and software that is being used with the printer. The documentation accom-
panying applications software and operating system software should tell you
what you have to do in order to use the fonts you require.

3.7.1 Automatic downloading

Nowadays many applications designed for handling text, such as word-pro-
cessors and desk-top publishing programs, will automatically manage font
downloading.

For example, suppose you are composing a document using PageMaker 4.0
running under System 7 on a Macintosh computer, driving the printer in
TrueImage mode. If you format a paragraph of body text in New Century
Schoolbook 12-point, and then print out the page containing the paragraph,
the paragraph will be printed using the resident printer font.

If you format a different paragraph in Palatino 10-point, and print out the
page containing the new paragraph, the Macintosh will check the printer’s
RAM and ROM to see if Palatino is available, and if it is not, will download
its own TrueType or PostScript Palatino font. The Truelmage interpreter
scales the new font to the correct size and the paragraph is then printed in
Palatino.

3.7.2 Manual download

Older operating system or applications software may not perform automatic
downloading. In these cases you will need to download soft fonts explicitly.
On PC systems running the MS-DOS operating system this can be done by
using the DOS COPY /B command to copy font files from the computer to
the printer. Usually, however, font vendors supply a downloading utility on
floppy disk with their fonts.

On older Macintosh systems, the Font Downloader utility may be used to
download fonts to the printer in Truelmage mode.

36

3.8 Conclusion

Font technology is in a continual state of flux. Virtually every month new
products are released and new technological advances are announced. Com-
mercial applications are now available that allow you to convert existing
fonts from one format or platform to another. For example, you could create
Macintosh TrueType fonts using your existing PC PostScript fonts. Soon we
may see font formats that allow the user to derive unlimited numbers ot vari-
ations from a small set of typeface designs.

For this reason it is well worth regularly reading the industry literature, and
monitoring the relevant topics on on-line bulletin boards, in order to keep
abreast of new developments.

37

MEMO

38

CHAPTER

Printer ContrOI
Language

4.1 Introduction

The Star LS-5EX and LS-5TT printers emulate the Hewlett Packard Laser-
Jet I11. In HP LaserJet III emulation mode, the printer is driven by a control
language known as Printer Control Language (PCL), a language that has
achieved wide acceptance as a de facto printer-control standard. This lan-
guage has evolved over several years and is now in its fifth major revision,
PCLS.

PCL features a wide range of commands and an extensive list of capabili-
ties.

* "Job control

* Page set-up

* Precise cursor positioning

* Support for both scalable and bitmap fonts
» Raster and vector graphics

e Macros

There are twenty-two resident PCL fonts already in the printer and you can
take advantage of many more by installing font cartridges that plug into the
printer’s cartridge slots, or by downloading fonts from your computer. There
are now thousands of commercially-available fonts, on cartridge, on floppy
disk and more recently on CD-ROM.

You can also construct fonts to your own design and download them using
PCL commands.

Powerful vector graphics capabilities are available in the shape of the GL2
graphics language, which can be directly accessed from PCL with a single
command. PCL and GL2 in conjunction allow you to combine high-quality
text and precision graphics in your output. GL2 is described in Chapter 5.

39

4.2 Printer control language commands

PCL commands are usually sent to the printer together with text and graphic
data that is to be printed. Their function is to enable the printer to interpret
and format the accompanying data correctly. Whenever the printer receives
a command, it executes it. This may simply entail performing a single oper-
ation, for example drawing a rectangle on the page, or may determine the
way subsequent operations are carried out, for example causing subsequent
text to be printed in Times bold.

There are two types of PCL command: control codes and escape sequences.

A control code is a single ASCII code that instructs the printer to perform
some simple operation, for example, <CR> (ASCII code 13), causes the
printer to perform a carriage return operation. Other common control codes
are <LF> (Line feed) and <FF> (Form feed). Control codes are normally
described by a two- or three-letter upper case abbreviation, for example
<CR>.

An escape sequence is a sequence of characters starting with the <ESC>
character. The <ESC> character is a control code (ASCII code 27). The
characters following the <ESC> character define the command, for example
<ESC>(s3B makes the primary font bold.

Most escape sequence commands include parameters. A typical command is
<ESC>(s16V which tells the printer to set the primary font type size to 16
point.

Some escape sequence commands are followed by a stream of data bytes
describing, for example, a character or a graphic image.

4.2.1 Applications software

Commercial applications software drives the printer by converting its own
commands to the equivalent PCL commands. Hence if you are using a
word-processor and want a particular word within a paragraph to appear in
italic, you would first select or highlight the word and then select the word-
processor’s own built-in “italic” command. The word-processor will auto-
matically send the correct commands to the printer at print time.

Some older word-processors require you to enter the PCL escape sequences
manually into the document you are working on. In this case you will enter
the escape sequence from the keyboard. This involves first positioning the

40

on-screen cursor and then pressing a combination of keys. The ALT and
CTRL Kkeys usually designate an <ESC> sequence. Consuit the particular
application’s manual for specific details.

4.2.2 Programming

If you are writing software to drive the printer, you will need to address the
printer directly. This is quite straightforward: PCL commands can be sent to
the printer using the same programming language commands that are used
to print ordinary text. In BASIC this is the LPRINT command, in C the
fprintf function.

A list of guidelines for coding follows:

Send control codes to the printer as ASCII codes, for example the com-
mand LPRINT CHRS$(13); will send a carriage return to the printer.

Send escape sequences by sending the <ESC> code followed by a text
string made up of the letters and numbers which follow. For example, the
command LPRINT CHR$(27);"(s3B"; will transmit the command to set
the primary font to bold.

Encode graphic images and font character definitions as a stream of
ASCII codes and send them to the printer using the LPRINT command or
equivalent.

Combine escape sequences into one single sequence when possible, as
this makes for more compact code. However, ensure that you arrange
commands in the exact order in which you want them executed: combined
escape sequences are always executed from left to right.

Compress character definitions and raster graphic data where possible.
For complex graphic output switch to GL2 mode from within PCL using
the <ESC>%nB command. Perform graphic operations using GL2 com-
mands before reverting to PCL with the <ESC>%nA command.

41

4.3 Command format
A control code command is a single ASCII code.

An escape sequence command consists of the <ESC> character followed by
one or more characters which identify the command. Most escape sequence
commands require parameter values. These are represented in the sequence
by the appropriate numeric characters: that is, in the escape sequence
<ESC>(s16V the point-size parameter value 16 is represented by the char-
acters ‘1’ and *6’. All the letters in an escape sequence must be lower case
except the final letter which must be uppercase.

There are six escape sequences that consist simply of <ESC> followed by a
single character: <ESC> E, <ESC> 9, <ESC> =, <ESC> Y, <ESC> Z and
<ESC> z.

All others consist of <ESC> followed by several characters. The standard
form is as follows: the first character after <ESC> is either &, (,) or *, the
second character i1s a lower case letter, the next one or more characters are
digits making up a number in the range —32768 to 32767, and the final char-
acter is an upper case letter (A — 7).

[f you omit the number parameter, the printer reads its value as 0.

The first, second and final characters of the escape sequence identify its
function and the parameter number specifies a setting or value.

There are four commands which have additional data bytes following the
final upper case character, for example the <ESC>(sn W command, which is
used to define a downloadable font character.

A few escape sequence commands vary slightly from this form.

Two or more escape sequences can be combined into one if the first two
characters of each sequence are the same. For example, <ESC>(s14V
(which seiects a height of 14 points for the primary font) and <ESC>(s1S
(which sets the primary font style to italic) may be combined and sent to the
printer as <ESC>(s14v1S. Only the final character of the combined
sequence is upper case. The “V’ at the end of the first command is made
lower case in the combined sequence.

42

4.3.1 Syntax

In this chapter commands are printed in the text as follows:

Control codes are represented by a two- or three-letter mnemonic in bold
type, e.g. <LF>.

Escape sequence commands are shown as follows:
The letters <ESC> in bold represent the escape character.

Letter and number characters in bold type are literals: they appear in the
escape sequence exactly as shown.

n in italics stands for a numeric parameter value.
Words in italics in angle brackets represent a stream of data bytes.

For clarity, lower case L is shown as *7’.

4.4 The buffer

When the printer receives data from the computer, it uses the data to build
up an image of a complete page in its memory.

When it has received a complete page’s data it images the data onto paper
and ejects the hard copy page.

The speed of this process is limited by the time the printer takes to process
the in-coming data, and the rate at which it can physically transfer the image
to paper.

All printable data and commands are stored (buffered) in the printer’s mem-
ory until the command to print and eject the page (<FF> or <ESC> E) is
recetved. Data that has been received by the printer but not yet transferred to
paper is described as being in the printer buffer.

4.5 The imaginary cursor

A laser printer does not have a physical cursor: each page is imaged in one
fell swoop as the drum rotates over the paper. However, when describing the
way in which PCL commands drive the printing process, it is helpful to
adopt the concept of a cursor.

The current cursor position is the position on the page from which printing
. of the next character or graphic object will commence.

The cursor position changes as text and graphics are printed, when explicit
cursor repositioning commands are used, and when a new page is begun.

43

4.6 The page

The sheet of paper on which the printer prints is called the physical page.
The printer supports eight different sizes of physical page.

The area of the physical page on which the cursor can be positioned is
known as the logical page. The size of the logical page depends on the phys-
ical page size. You can use PCL page definition commands to reposition and
rotate the logical page.

The printable area is the area of the physical page on which the printer can
place a dot. This is not the same as the logical page: the printable area is
determined purely by the physical limits of the printer, whereas the logical
page location can be altered by the user.

The text area is the area of the page bounded by the margins. Margins can be
set using PCL commands or the control panel. The text area must lie wholly
within the logical page.

The picture frame is the rectangular area of the page in which GL2 graphic
images can be displayed. You can set the size and position of the picture
frame using PCL commands. The default picture frame and default text area
are the same.

The diagrams which follow show the physical page, printable area and
default logical page and picture frames for portrait and landscape pages. The
table lists their dimensions for the ditferent physical page sizes available.

44

Physical page

Printable area

Logical page
o8 Picture frame
Yy
A B C D E F G
Letter 2550 3300 2400 3300 75 50 150
Legal 2550 4200 2400 4200 75 50 150
Executive | 2175 3150 2025 3150 75 50 150
Ad 2480 3507 2338 3507 71 50 150
Com-10 1237 2850 1087 2850 75 50 150
Monarch | 1162 2250 1012 2250 75 50 150
Cs 1913 2704 1771 2704 71 50 150
DL 1299 2598 1157 2598 71 50 150

All dimensions are in 1/300".

b e e e e e = = - —

Physical page

Printable area

> € D Logical page
Picture frame
— Y
- c >
- A >

A B C D E F G
Letter 3300 2550 3180 2550 60 50 150
Legal 4200 2550 4080 2550 60 50 150
Executive | 3150 2175 3030 2175 60 50 150
A4 3507 2480 3389 2480 59 50 150
Com-10 2850 1237 2730 1237 60 50 150
Monarch | 2250 1162 2130 1162 60 50 150
Cs 2704 1913 2586 1913 59 50 150
DL 2598 1299 2480 1299 59 50 150

All dimensions are in 1/300".

46

4.7 The PCL coordinate system

The PCL coordinate system has its origin in the top left-hand corner of the
current logical page. There are three types of unit: dots (1/300"), decipoints
(1/720") and rows and columns. A row is the height of a text line as defined
by the vertical motion index (VMI) setting. A column is equal to the width
of a single space character and is defined by the horizontal motion index
(HMI) setting.

Cursor positioning commands allow you to place the cursor anywhere on
the logical page by reference to the coordinate system. Movement can be
absolute with respect to the coordinate system origin or relative to the cur-
rent cursor position.

The default cursor position is the position the cursor is set to on a new page.
The default cursor position is at the left margin, 3/4 the height of a row
below the top margin. This positions the cursor on the baseline of the first
line of text on the new page.

The GL2 graphics language uses a different coordinate system and contains
its own cursor positioning command. These are described in Chapter 5.

47

4.8 The printing environment

An environment is a combination of printer settings. The original settings
pre-programmed into the printer that are current when you first use the
printer in PCL mode, are known as the factory default environment.

There are four different types of environment to which we shall refer in this
chapter.

4.8.1 Factory default environment

The factory default environment is made up of the settings programmed into
the printer before it leaves.the factory. You can revert to the factory default
settings whenever you wish using the printer’s control panel. See Chapter 2
for details.

The HP LaserJet I1I emulation factory default environment consists both of
PCL parameter settings and GL2 graphics settings.

The table below shows the factory default PCL settings. The default GL2
settings are listed in the description of the GL2 IN command in Chapter 5.

Number of Copies 1 Stroke Weight Medium
Registration Left=0, Top=0 Typeface Courier

Print Direction 0 Underlining Mode Off
Orientation Portrait Font ID 0

Page Size A4 Character Code 0

Paper Source Paper Tray Left Graphics Margin 0

Vertical Motion Index 8 (6 Ipi) Resolution 75 dpi
Horizontal Motion Index | 12 (10 cpi) Compression Mode 0

Top Margin 172" (150 dots) Raster Height Not Set

Text Length 64 lines Raster Width Logical Page Width
Left Margin Left edge of logical page Current Pattern Solid

Right Margin Right edge of logical page Source Transparency Mode O (transparent)
Perforation Skip On Pattern Transparency Mode O (transparent)
Line Termination CR=CR, LF=LF, FF=FF Horizontal Rectangle Size 0

Symbol Set Roman-8 Vertical Rectangle Size 0

Spacing Fixed Area Fill ID 0

Pitch 10 cpi Macro ID 0

Heig};t 12 point End-of-Line Wrap Off

Style Upright Display Functions Off

48

4.8.2 User default environment

The user default environment is the combination of the factory default set-
tings and any settings made by the user from the printer’s control panel. Set-
tings that can be made from the control panel include the number of copies,
paper feed type and paper size. Most control panel-settable features can also
be set using PCL commands.

You can restore the user default environment either by using the PCL com-
mand <ESC>E, or by performing a reset from the printer’s control panel.
When you perform a reset all settings made using PCL commands are lost.

See Chapter 2 for a description of a control panel reset.
The user default environment is retained when the printer is switched off.

The user default environment is made up of the factory default environment
settings plus the following:

Nl;mber of copies | Symbol set

Font source Paper tray

Font ID Page size

Pitch Feed type (manual or automatic)
Font height Orientation

Typeface Form length

4.8.3 Modified print environment

The modified print environment is made up of the current values of all set-
tings that can be made with PCL commands (with a small number of excep-
tions). Whenever you change a setting with a PCL command, the modified
print environment is updated accordingly.

Any parameters that have not been set by PCL commands retain their user
default or factory default environment values.

If you use the Call macro or Enable macro for overlay command, the modi-
fied print environment is saved. After completion of the macro the modified
print environment is restored again. Macros invoked using the Execute
macro command can alter the modified print environment.

49

GL.2 settings are not part of the modified print environment.

The settings which make up the modified print environment are listed below.

Page length

Macro ID

Page size

VMI/Line spacing

Orientation

Horizontal rectangle size

Left registration

Vertical rectangle size

Top registration

Area fill ID

Paper source

Raster graphics resolution

Number of copies

Raster graphics presentation mode

Margins

Raster graphics left margin

Perforation skip mode

Pattern ID

Line termination mode

Current pattern

End-of-line wrap

Source transparency mode

Primary font

Pattern transparency mode

Secondary font

Print direction

Current font (Primary or secondary)

Raster graphics compression mode

Primary font characteristics

Underline mode

Secondary font characteristics

Raster graphics height

HMI

Raster graphics width

Foni ID

Character code

The following settings are not part of the modified print environment

Current cursor position

Cursor position stack

Downloaded fonts and macros

Picture frame size

GL2 plot size

Picture frame anchor point

50

4.8.4 Macro overlay environment

The macro overlay environment is a version of the modified print environ-
ment in which some user default environment settings override the current
settings. The overlay environment becomes current when you invoke a
macro using the Enable macro for overlay command. The overlay environ-
ment is described in the section Macros at the end of this chapter.

51

4.9 General printer control commands

This section describes the more general commands to control the printer,
including job control, page set-up and cursor positioning commands, and
commands for adjusting certain output characteristics.

4.9.1 Job control commands

The commands in this section prepare the printer for a print job. There are
two commands for selecting the paper source: the Paper source command
and the Select feeder command. Select feeder is a special command that will
work in both LaserJet III and TrueImage emulation modes.

Reset - <ESC> E

A Reset restores the user default environment.
Any data still in the printer bufter is printed out.

It is a good idea always to start a print job with a Reset, so that all settings
are in a known state.

Any temporary fonts and temporary macros are deleted from memory.
The command also has the following effects on the GL2 vector graphics state.

» All GL2 graphics settings are reset to their default values. Default values of
these settings are listed in the description of the IN command in Chapter 5.

* The picture frame is reset to its default size and location.

» The GL2 horizontal and vertical plot sizes are reset to their default values,
equal to the width and height of the PCL picture frame. GL.2 plot size is
explained in Chapter 5.

You can also perform a Reset from the control panel; see Chapter 2.

Select number of copies - <ESC>&Z nX

This command specifies the number of copies to be printed; the new setting
takes immediate effect.

The current page and the following pages will be printed out the specified
number of times.

n can be from 1 to 99.
The factory default number of copies is 1.

You can also select the number of copies from the control panel; see Chapter
2.

52

Select feeder - <ESC>[Cn

The command selects the paper feeder. On receipt of this command any data
in the printer buffer is printed out and the new setting is applied to subse-
quent pages. The cursor is placed at the default cursor position on the new

page.

Values for n are as follows.

1 Front paper tray

2 Front paper tray for one sheet, then cassette

4 Cassette

5 Cassette for one sheet, then front paper tray

7 Optional cassette

8 - Front paper tray for one sheet, then optional cassette
9 Cassette for one sheet, then optional cassette

The factory default paper source is the cassette.

Paper source - <ESC>&/nH

The command selects the paper source. Any data in the printer buffer is
printed out and the paper source is set as specified. The cursor is placed at
the default cursor position on the new page.

Values for n are as follows

0 No change

1 Front paper tray

2 Manual feed

3 Manual envelope feed
4 Cassette

7 Optional cassette

The factory default paper source is the cassette.

53

Change emulation - <ESC> [En
The command switches emulation mode.

The command is effective in any mode.
n = 0 selects HP LaserJet 11l mode
n =5 selects Truelmage mode

You must preface this command with the <CR> and <FF> control codes to
eject the current page, otherwise the command simply ejects the current
page and performs a Reset without altering the emulation.

54

4.9.2 Page definition commands

This section describes commands for selecting the paper size and setting the
position and orientation of the logical page. You can set the page size in two
ways: either by explicitly selecting a paper or envelope size, or by specify-
ing the number of text lines to be printed per page, in which case the printer
calculates the physical page size based on the current VMI value.

There are two commands for selecting the paper size: the Page size command
and the Select paper size command. Select paper size is a special command
that will work in both LaserJet III and TrueImage emulation modes.

Select paper size - <ESC>[S n

The command selects the paper or envelope size that the printer will use.

Values for n are as follows.

1 Letter

2 Legal

3 A4 international
4 Executive

5 B35 international

11 Monarch (envelope)

12 Com- 10 (envelope)

13 International DL (envelope)

14 International C5 (envelope)

Any data in the printer buffer is printed out. The cursor is placed at the
default cursor position on the new page.

If cassette selection has been set to “Automatic” from the control panel, and
there is a tray inserted containing the selected cize, paper is automatically
fed from that tray.

Otherwise, if the paper size you select conflicts with the size of the paper in
the selected paper feeder, a message appears on the control panel requesting
you to change the paper tray.

You can override this request from the control panel. The printer will then
proceed to use the paper in the currently selected feeder.

55

If n is set to a value other than those shown above, the command is ignored.
The factory default page size is A4.

The logical page size and position, the left, right and top margins, and the
text length are set to the default values for the new page size.

The picture frame is set to its default size and position.
Any overlaid macro will be discarded.
The command also has the following effects on the GL2 vector graphics state.

* The GL2 horizontal and vertical plot sizes are reset to their default values,
equal to the width and height of the PCL picture frame. GL2 plot size is
explained in Chapter 5.

» The scaling points, Pl and P2, the input window (soft clip limits) and the
GL2 cursor are all reset to their default positions.

* The polygon buffer is emptied.

Page size - <ESC>&/nA

The command selects the paper or envelope size that the printer will use.

Values for n are as follows

1 Executive

2 Letter

3 Legal

26 A4 international

80 Monarch (envelope)

81 Com-10 (envelope)

90 International DL (envelope)

9] International C5 (¢nvelope)

Other values of n are ignored.
This command does not support BS international size paper.

In all other respects the command is the same as the Select paper size -
<ESC>[S rn command.

The factory detault page size is A4.
56

Page length - <ESC>&/nP

The command sets the logical page length in text lines.
n is the length of the logical page in lines (at the current VMI setting).

This command effectively selects the paper size: the smallest available size
onto which the logical page can fit.

However, the Page size and Select paper size commands are preferable for
page size selection.

It is best to use this command in conjunction with the Vertical motion index
command to take advantage of an existing page size setting.

On receipt of this command the printer prints out any pages remaining in the
printer buffer.

Paper sizes and the equivalent page length settings in text lines at 6 and 8
lines-per-inch are as follows.

Portrait i Landscape
Page 6 Ipi 8 Ipi 6 Ipi 8 Ipi
Letter 66 88 51 68
Legal 84 112
Ad 70 93 49 66
Executive | 63 84 43 58

If cassette selection has been set to “Automatic” from the control panel, and
there is a tray inserted containing the selected size, paper is automatically
fed from that tray.

Otherwise, if the paper size selected conflicts with the size of the paper in
the selected paper feeder, a message appears on the control panel requesting
you to change the paper tray.

You can override this request from the control panel. The printer will then
proceed to use the paper in the currently selected feeder.

The left, right and top margins, and the text length are set to the default val-
ues for the new page size.

57

The picture frame is set to its default size and position.
Any overlaid macro will be discarded.

If the value of n that you specify selects a logical page longer than any avail-
able paper size, or if the current VMI setting is 0, the logical page length and
the paper size are not changed. However, the command still prints out any
remaining pages, discards any overlaid macro and resets the margins and
text length.

You cannot select Legal size in landscape orientation with this command. To
do this first select Legal in portrait orientation, then change the orientation
of the logical page to landscape.

You can set text length in lines-per-page from the control panel; however,
this can alter the current VMI setting.

The command also has the following effects on the GL2 vector graphics
state.

* The GL2 horizontal and vertical plot sizes are reset to their default values,
equal to the width and height of the PCL picture frame. GL2 plot size is
explained in Chapter 5.

* The scaling points, P1 and P2, the input window (soft clip limits) and the
GL2 cursor are all reset to their default positions.

» The polygon buffer is emptied.

Left offset registration - <ESC>&/ nU

The command sets the horizontal offset of the logical page from its default
position. .

n specifies the offset in decipoints (1/720") of the left edge of the logical
page.

A positive value of n moves the logical page to the right on the physical
page, a negative value moves it to the left.

To shift the logical page 1/4" to the right, set n to180 (180 x 1/720" = 1/4").

The command always moves the logical page across the width of the physi-
cal page, no matter what the current logical page orientation.

n is accurate to 2 decimal places.

58

Top offset registration - <ESC>&7/nZ

The command sets the vertical offset of the logical page from its default
position.

n specifies the offset in decipoints (1/720") of the top edge of the logical
page.

A positive value of n moves the logical page down the physical page, a neg-

ative value moves it upwards.

To shift the logical page 1/2" down the physical page, set n to 360 (360 x
1/720" = 1/2").

The command always moves the logical page up or down the length of the
physical page, no matter what the current logical page orientation.

n is accurate to 2 decimal places.

59

Logical page orientation - <ESC>&/ nO
The command sets the orientation of the logical page relative to the physical
page.

Values for n are as follows.

0 Portrait

1 . Landscape

2 Reverse portrait

3 Reverse landscape

Values other than 0, 1, 2 or 3 are ignored.

On receiving this command, the printer prints out any pages remaining in
the printer buffer,

The cursor is placed at the default cursor position on the next page.

The command resets page length, text length, top, left and right margins,
HMI and VMI to their user default values. The picture frame is reset to its
default size and position.

Any macro has been enabled for overlay will be discarded.

The logical page orientation and print direction settings together determine
the orientation of text on the page.

To print in more than one orientation on a single page use the Print direction
command or Select orientation command. The printer will automatically
rotate fonts as necessary.

Portrait or landscape orientation can also be selected from the control panel.
The factory default logical page orientation is portrait.
The command also has the following effects on the GL2 vector graphics state.

» The GL2 horizontal and vertical plot sizes are reset to their default values,
equal to the width and height of the PCL picture frame. GL2 plot size is
explained in Chapter 5.

* The scaling points, Pl and P2, the input window (soft clip limits) and the
GL2 cursor are all reset to their default positions.

* The polygon buffer is emptied.

60

Select orientation - <ESC>[O n
The command rotates the orientation of printing.

This command will work in any emulation mode.
n = 0 selects portrait.
n = 1 selects landscape.

In portrait orientation the coordinate system origin is in the top left-hand
corner of the page, in landscape orientation it is in the bottom left-hand cor-
ner. Hence, cursor positioning must be amended accordingly.

The command resets page length, text length, top, left and right margins,
HMI and VMI to their user default values.

The picture frame is reset to its default size and position.
The printer automatically rotates fonts as necessary.
Portrait or landscape orientation can also be selected from the control panel.

The factory default logical page orientation is portrait.

61

4.9.3 Margins and line spacing commands

The commands in this section set the row and column size, the coordinate
system units, the number of lines per page and the margins.

Horizontal motion index - <ESC>&knH
The command sets the column width in 1/120".

A column is the unit of horizontal movement across the width of the logical
page.

If the current font is monospaced, the HMI is the horizontal distance the cur-
sor moves when any single character is printed. The Space (<SP>) and
Backspace (<BS>) control codes move the cursor a distance of one column.

If the current font is proportionally spaced, the HMI is the horizontal dis-
tance the cursor moves when a Space control code is sent to the printer. The
distance the cursor moves when a character is printed depends on its shape.

Switching between the primary and secondary fonts using the Select pri-
mary font (<SO>) or Select secondary font (<SI>) control codes, or chang-
ing any font attributes (e.g. point size or style) resets the HMI to the new
current font’s default pitch.

Margin settings are not affected by a change in the HML
n must be in the range 0 — 32767 and is accurate to 4 decimal places.
The factory default HMI is 1/10".

Vertical motion index - <ESC>&/nC
The command sets the height of a single row in 1/48".

A row is the unit of vertical movement down the length of the logical page.

The VMI is the vertical distance the cursor moves down the page when a
Line feed (<LF>) control code is sent to the printer. The setting determines
both the Line feed (<LF>) and Half line feed (<KESC>=) distances.

If you try to set the VMI to greater than the length of the logical page, the
command is ignored.

The position of the top margin is not affected by a change in the VML
The factory default setting is 8: equivalent to 6 lines of text per inch.

If the text length is changed from the control panel, the VMI will automati-
cally be changed.

n must be in the range 0 — 32767 and is accurate to 4 decimal places.

62

Set line spacing - <ESC>&/nD

The command sets the number of text lines printed per inch.
ncanbe 1,2, 3,4,6,8,12,16, 24 or 48.

Subsequent text is printed at n lines per inch.

Values of # other than those listed above are ignored.

The command is equivalent to the Vertical motion index command and sets
the VMI to 1/n"

The setting determines both the Line feed (<LF>) and Half line feed
(<ESC>=) distances.

The position of the top margin is not affected by a change in the line spac-
ing.
The factory default setting is 6 lines per inch.

The number of lines per page can also be set from the printer’s control
panel.

Set left margin - <ESC>&anL

The command sets the distance between the left edge of the logical page and
the left margin in columns.

The width of a column is set using the Horizontal motion index command.

The left margin setting remains in effect until a new one is set or another
command resets the margin to its default position.

Subsequent changes to the HMI do not affect the margin’s position.

If you try to set the left margin to the right of the current right margin, the
command is ignored.

If the cursor is to the left of the new left margin setting, it is moved to the
new left margin.

The factory default left margin is the left edge of the logical page.

Margin settings can also be made from the printer’s control panel.

63

Set right margin - <ESC>&anM

The command sets the distance between the left edge of the logical page and
the right margin in columns.

The width of a column is set using the Horizontal motion index command.

The right margin setting remains in effect until a new one is set or another
command resets the margin to its default position.

Subsequent changes to the HMI do not affect the margin’s position.

If you try to place the right margin beyond the right edge of the logical page,
the margin is set to the right edge of the logical page.

If you try to set the right margin to the left of the current left margin, the
command is ignored.

If the cursor is to the right of the new right margin setting, it is moved to the
new right margin.

The factory default right margin is the right edge of the logical page.
Margin settings can also be made from the printer’s control panel.

Clear horizontal margins - <ESC>9
The command resets the positions of the left and right margins.

The default left margin is the left edge of the logical page.
The default right margin is the right edge of the logical page.

64

Top margin - <ESC>&/nE

The command sets the distance between the top edge of the logical page and
the top margin in rows.

The height of a row is set using the Vertical motion index or Set line spacing
command.

The top margin setting remains in effect until a new one is set or another
command resets the margin to its default position.

Subsequent changes to the VMI do not affect the margin’s position.

The command resets the text length: text length = logical page length — (top
margin + 1/2"). This automatically sets a bottom margin of 1/2".

If you try to set the top margin to be greater than the current logical page
length, the command is ignored.

If the current VMI is 0, the command is ignored.
The factory default top margin is 1/2" below the top of the logical page.

Margin settings can also be made from the printer’s control panel.

65

Text length - <ESC>&/ nF

The command sets the number of lines of text per page.
Printing starts from the top margin.

The text length and the current VMI (or line spacing) settings together deter-
mine the length of the text area: the area of the logical page in which text
can be printed.

The text area length and top margin setting effectively set a bottom margin.

If a value is specified that would cause the text area to extend below the bot-
tom of the logical page, the command is ignored.

If the current VMI setting is 0, the command is ignored.

The text length can also be set from the control panel: the VMI is automati-
cally recalculated so that the length of the text area does not change.

Any of the following commands, Page size, Select paper size, Page length,
Logical page orientation or Top margin, reset the text length to its user
default (control panel) setting.

The factory default text length for a particular page size = (default logical
page length — 1") X 6. The result is rounded down to the nearest integer.

Perforation skip - <ESC>&/ nL

The command turns perforation skip on or off.

n = 0 turns off perforation skip. » = 1 turns on perforation skip.
Other values are ignored.

The perforation region is the area between the bottom margin of one page
and the top margin of the next.

When perforation skip is on, the printer prints inside the text area until it
receives a command that would move the cursor below the bottom margin.
The printer then ejects the current page and moves the cursor to the default
cursor position on the next page. If there is data in the printer buffer, printing
continues on the new page.

When perforation skip is off, commands can move the cursor down into the
perforation region, enabling printing below the bottom margin and above
the top margin.

Changing the perforation skip setting resets the top margin and page length
to their default values.

The factory default setting is perforation skip on.

66

4.9.4 Positioning the cursor
The commands in this section are used to position the cursor. In addition, up
to 20 cursor positions can be stored and retrieved.

Space - <SP>

The <SP> control code moves the cursor one column to the right, as defined
by the current HMI setting.

If the current font is monospaced, the cursor moves one column to the right.

If the current font is proportionally spaced, the cursor moves one column to
the right, unless a special space character is defined in the current symbol
set, in which case the defined space character is printed and the cursor is
moved to the right by the width of the character.

Carriage return - <CR>

The <CR> control code moves the cursor to the left margin on the current
line.

The cursor does not move vertically.

The Line termination command or the control panel auto line feed function
can be used to set the <CR> control code to perform a carriage return/line
feed, to move the cursor to the left margin on the next line.

Line feed - <LF>

The <LF> control code moves the cursor down the page one row, as defined
by the VMI set by the most recent Vertical motion index or Set line spacing
command.

The cursor does not move horizontally.

The Line termination command can be used to set the <LF> control code to
perform a carriage return/line feed, to move the cursor to the left margin on
the next line. '

67

Form feed - <FF>

The <FF> control code ejects the current page and moves the cursor to the
first line of the text area on the next page.

The cursor does not move horizontally.

The cursor is positioned 3/4 of a row below the top margin, as defined by the
VMI set by the most recent Vertical motion index or Set line spacing com-
mand.

The Line termination command can be used to set the <FF> control code to
perform a form feed and a carriage return, to move the cursor to the left mar-
gin on the first line of the next page.

Backspace - <BS>
The <BS> control code moves the cursor one column or one character width
to the left.

If the current font is monospaced, the cursor moves one column width to the left.

If the current font is proportionally spaced, a <BS> code moves the cursor a
distance equal to the width of the overstrike character.

If the currently selected font is proportionally spaced, multiple <BS> codes
move the cursor a distance equal to the width of the most recently printed
character. For example, if you print the string ““abcd” followed by four <BS>
control codes, the cursor moves to the left four times the width of the *d’.

If the cursor is on the left margin when a Backspace is sent, the code is ignored.

Horizontal tab - <HT>

The <HT> control code moves the cursor to the next tab stop on the current
line.

The tab stops are at the left margin and at every eighth column across the
text area.

If there are no tab stops between the current cursor position and the right
margin, the cursor moves to the right margin.

If the current HMI setting is 0, the command is ignored.

68

Horizontal cursor position (columns) - <ESC>&anC
The command positions the cursor horizontally in column units.

Movement can either be absolute with respect to the left edge of the logical
page, or relative with respect to the current cursor position.

The width of a column is as defined by the current HMI setting.
n specifies the number of columns the cursor is to be moved.

If n 1s unsigned, the cursor is moved n columns to the right of the left edge
of the logical page.

A plus or minus sign before n denotes movement relative to the current cur-
SOr position.

A plus sign before n moves the cursor n columns to the right of the current
cursor position.

A minus sign before n moves the cursor n columns to the left of the current
position.

The cursor’s vertical position does not change.
n is accurate to 4 decimal places.

The command can move the cursor outside the horizontal margins but not
outside the edges of the logical page.

If a position outside the edges of the logical page is specified, the cursor is
moved to the left or right edge of the logical page.

Horizontal cursor position (dots) - <ESC>*pnX

This command performs exactly the same function as the Horizontal cursor
position (columns) command described above. The only difference is that
the units used are dots (1/300"), not columns.

Horizontal cursor position (decipoints) - <ESC>&anH

This command also performs exactly the same function as the Horizontal
cursor position (columns) command described above. The only difference is
that the units used are decipoints (1/720"), not columns.

n is accurate to 2 decimal places.

69

Vertical cursor position (rows) - <ESC>&anR
The command positions the cursor vertically in row units.

Movement can either be absolute with respect to the top of the logical page,
or relative with respect to the current cursor position.

The height of a row is as defined by the current VMI setting.
n specifies the number of rows the cursor is to be moved.

If n is unsigned, the cursor is moved »n rows down from the current top mar-
gin. (Hence a Top margin command affects subsequent absolute movement
specified with this command).

A plus or minus sign before n denotes movement relative to the current cur-
sor position.

A plus sign before n moves the cursor # rows down from the current cursor
position.

A minus sign before n moves the cursor n rows up from the current position.
The cursor’s horizontal position does not change.
n 1s accurate to 4 decimal places.

The command can move the cursor beyond the top and bottom margins but
not outside the edges of the logical page.

If a position outside the edges of the logical page is specified, the cursor is
moved to the top or bottom edge of the logical page.

Vertical cursor position (dots) - <ESC>*pnY

This command performs exactly the same function as the Vertical cursor
position (rows) command described above. The only difference is that the
units used are dots (1/300™), not rows.

Vertical cursor position (decipoints) - <ESC>&anV

This command also performs exactly the same function as the Vertical cur-
sor position (rows) command described above. The only difference is that
the units used are decipoints (1/720"), not rows.

n is accurate to 1 decimal place.

70

Half line feed - <ESC>=

The command moves the cursor down the page by half a row.

Row (or line) height is the VMI set by the most recent Vertical motion index
or Set line spacing command.

The cursor’s horizontal position does not change.

Push/pop cursor position - <ESC>&fnS

Up to 20 cursor positions can be stored on the cursor position stack.

This command stores the current cursor position or retrieves a stored posi-
tion.

If n = 0, the current cursor position is placed on the stack. The current posi-
tion does not change.

If n = 1, the cursor position on top of the stack is removed from the stack
and made the current cursor position.

Cursor positions are retrieved (popped) from the stack in the opposite order
to that in which they were placed (pushed) onto the stack.

If you try to store more than 20 positions, or try to retrieve a cursor position
from an empty stack, the command is ignored.

Cursor positions are always interpreted relative to the top left-hand corner of
the current logical page in its current orientation. Hence, a cursor position
retrieved from the stack may have a new physical location on the page.

If a popped cursor position lies outside the logical page, the cursor is posi-
tioned on-the edge of the logical page closest to it.

A Reset empties the stack.

71

4.9.5 Miscellaneous output commands
The commands described in this section change the way in which output
appears.

Print direction - <ESC>&anP

This command allows printing of text in multiple directions on a single
page.

The command changes the orientation of the logical page with respect to the
physical page but does not eject the current page.

n specifies the angle or rotation in degrees, and can be 0, 90, 180 or 270. The
logical page is rotated counterclockwise through the selected angle. The
equivalent orientations are as shown below.

0 Portrait

1 Landscape

2 Reverse portrait

3 Reverse landscape

The cursor position retains the same physical position, thus its coordinates
change.

Margins are translated. For example, if n = 90 the top margin becomes the
new left margin, the left margin becomes the new bottom margin, the bot-
tom margin becomes the new right margin and the right margin becomes the
new top margin.

The margin positions relative to the edges of the logical page do not change.
Subsequent text and graphics are printed in the new orientation.

The current HMI setting does not change.

The command has no effect on GL2 graphics state.

If a value of n other than the above is specified, the command is ignored.

The factory default orientation is portrait.

72

Line termination - <ESC>&knG

The command selects the way in which the printer interprets the carriage
return, line feed and form feed control codes.

Set n as follows.

0 CR=CR, LF=LF, FF=FF

1. CR=CR/LF, LF=LF, FF=FF

2 CR=CR, LF=CR/LF, FF=CR/FF

3 CR=CR/LF, LF=CR/LF, FF=CR/FF

If n is set to a value other than 0, 1, 2 or 3, the command is ignored.

End of line wrap - <ESC>&snC

The command specifies the action taken when text is about to go over the
right margin.

n = 0 turns text wrap on: lines longer than the width of the text area flow
onto the next line. An automatic carriage return/line feed is performed so
that text is not lost.

n = | turns text wrap off: lines longer than the width of the text area are
clipped at the right margin. When text is clipped any part of a character that
would lie beyond the right margin will not appear on the printed page.

When text is clipped, the cursor is moved to the right margin.
This command is mainly for use with the display functions mode.
If n is set to a value other than 0 or 1, the command is ignored.

The factory default setting is End of line wrap off.

73

Display functions on - <ESC> Y

The command turns on display functions mode.

In display functions mode the printer prints out escape sequences and con-
trol codes instead of executing them.

The only commands which do function in this mode are <CR>, which per-
forms a carriage return/line feed, and <ESC> Z, which turns display func-
tions mode off.

Data is printed out in the current font and inside the current text area.
The <ESC> Z command is both printed out and executed.

Display functions mode allows printing of characters defined for character
codes 0, 7— 15 and 27.

Most symbol sets do not have printable characters defined in the code ranges
0 -31 and 128 — 159. If no character is defined, a space is printed instead.

Display functions off - <ESC> Z

The command turns off display functions mode.

“<ESC> Z” is printed, but all subsequent escape sequences and control
codes are executed normally and not printed out.

Self test - <ESC> z

The command prints out a test sheet.

74

4.10 Fonts

4.10.1 Introduction
Fonts and typography are discussed fully in Chapter 3.

In the context of the HP LaserJet 11l emulation, a font is a set of symbols of
a given size, pitch, typeface, weight and style, for example, 12 point, 10
characters-per-inch Courier medium italic in the Roman-8 symbol set.

Bitmap fonts are fonts whose character size is fixed, for example Courier 12
point.

Scalable fonts are fonts with no implied character size: you can choose any
size you want when you select a scalable font for printing.

The printer comes with fourteen bitmap fonts and eight scalable fonts which
are stored in the printer’s ROM (read-only memory). These are known as
internal fonts. You can select these fonts and print using them at any time
using PCL commands or the control panel.

Using PCL. commands you can also select any other font, providing that you
make it available to the printer in one of the following ways. Bitmap and
scalable fonts are available on cartridges which you can plug into the print-
er’s cartridge slots. These fonts are then ready for use just as if they were
internal fonts. Bitmap and scalable fonts are also available on floppy disk or
CD-ROM. You can download these fonts to the printer from your computer.
In the same way, you can also download fonts that you have created yourself
on your computer. Fonts transferred from a computer are stored in the print-
er’s RAM (random access memory) and are referred to as downloaded or
‘soft’ fonts.

However, the printer also uses its RAM to compose each page prior to print-
ing it out. If you download too many fonts the printer may run out of mem-
ory and be unable to continue printing.

Downloaded fonts are deleted from the printer’s memory when you switch it
off. To use them again you must redownload them.

Using PCL commands you can select any font by specifying its attributes,
for example Roman-8, 12 point, 10 characters-per-inch Courier medium
italic. Fonts you select must be available in ROM, RAM or on cartridge, oth-

75

erwise the printer will not be able to render the exact font specifications that
you select. If the printer cannot find the designated font, it will try to match
your selection as closely as it can using the fonts available.

Fonts can also be selected by a unique ID number.

The most recently selected font is known as the current font. At all times the
printer maintains two font definitions: the primary font and the secondary
font. You can define and modify these with PCL commands or from the con-
trol panel. A single PCL command sets either of these to be the current font.

Escape codes with ‘(* as the second character specity font characteristics of
the primary font.

Escape codes with °)* as the second character specify font characteristics of
the secondary font.

The factory default primary and secondary fonts are both Courier 12 point,
10 characters per inch, medium, upright, in the Roman-8 symbol set.

76

4.10.2 Selecting a font

To select a font for printing, either use PCL commands to specify its charac-
teristics, or select it with a single PCL command by quoting its unique iden-
tification number.

If you select a font by designating its characteristics, the printer will print
exactly as you specify, provided that the font is available either as an inter-
nal font, on cartridge or in memory. For example, if you specify 12 point, 10
cpi, Courier italic Roman-8 as the primary font, the printer can print in
exactly that font, as it is one of the internal fonts.

However, if you specify a font that is not available, the printer will instead
select an available font whose characteristics match your specifications in
the following order of priority:

symbol set

spacing type

pitch (for fixed space fonts only)

height

style

stroke weight

typeface

These attributes are explained fully in the following section.

4.10.3 Symbol set

A symbol set is a pre-defined set of symbols. Symbol sets normally contain
lower and upper case letters, the digits O to 9, punctuation marks and other
commonly used symbols. Some symbol sets are designed for particular pur-
poses, for example, for printing text in" a foreign language or for printing
mathematical expressions.

Symbol set is the highest priority font attribute. The printer will always
ensure that the selected symbol set is used if it is available, even at the
expense of all the other specified attributes

77

4.10.4 Character spacing
There are two types of spacing, fixed spacing (monospacing) and propor-
tional spacing.

The characters of a fixed space font all occupy the same amount of space on
a line. Hence all eight-letter words in a particular fixed space font will be of
equal length on the printed page.

The characters of a proportionally spaced occupy varying amounts of space
on a line according to their design. Hence eight-letter words in a proportion-
ally spaced font will vary in length.

4.10.5 Pitch

The pitch setting is the number of characters per inch on a line. Pitch only
applies to fixed space fonts.

4.10.6 Height

A font’s height or point size is the vertical distance in points (1/72")
between the top of the font’s highest ascender and the bottom of its lowest
descender. See on page 24 of Chapter 3 for an explanation of the terms
“ascender” and “descender”. Bitmap fonts are available only in fixed sizes,
for example 10 point or 12 point. Scalable fonts are available in any size
from 0.25 point to 999.75 point, in steps of 0.25 points.

4.10.7 Style

Font style is the combination of posture (upright or italic), width (con-
densed, normal or expanded etc.) and structure (solid, outline or shadow
etc.). Both upright and italic fonts are available as internal fonts. Fonts with
widths other than normal, or structures other than solid must be installed on
a cartridge or downloaded.

78

4.10.8 Stroke weight

Stroke weight is the thickness of the strokes which makes up the font’s char-
acters. Normal line thickness is known as medium. Bold and light are
thicker and thinner stroke weights respectively.

There are 15 different stroke weights ranging from Ultra Thin to Extra
Black.

Both medium and bold fonts are available as internal fonts. To print text in
other stroke weights you must install the appropriate font on a cartridge or
download it to the printer.

If the printer cannot match the selected stroke weight exactly, it matches it
as closely as possible.

4.10.9 Typeface

The typeface of a font is the unique style of the characters. Common exam-
ples include Times, Univers, Palatino and Courier. The printer’s own
installed typefaces are Courier, Line Printer, Univers and CG Times. You
can select fonts in these typefaces at any time.

Typeface is the lowest priority font attribute. When you select a font in a
given typeface, ensure that an exact match is available in one of the font
locations. If the exact font is not available, the printer may substitute a font
of a different typeface that matches higher priority attributes, such as stroke
weight.

4.10.10 Location

If two available fonts match your font specification equally, the printer
chooses between them according to their location. Downloaded fonts have
the highest priority and internal fonts the lowest. A bitmap font takes prior-
ity over a scalable font in the same location.

4.10.11 Orientation

The printer can rotate any font to each of the four logical page orientations.
However, this uses up memory and can be slow. Fonts are commercially
available in different orientations to make printing in different logical page
orientations easier.

If two fonts match the font specification equally in all categories, the printer
selects the font whose orientation is the same as the current logical page ori-
entation.

79

4.10.12 Font selection commands

These commands control and specify the attributes of the primary and sec-
ondary fonts. Commands override any previous settings you have made,
both those made using PCL commands and those made using the control
panel.

Select primary font - <Sl>
The command makes the primary font the current font.

Subsequent text is printed in the primary font.

Select secondary font - <SO>
The command makes the secondary font the current font.

Subsequent text is printed in the secondary font.

Set primary font to default values - <ESC>(3@

The command sets the primary font to the user default (control panel) pri-
mary font settings

Any primary font settings made using PCL. commands are discarded.

Set secondary font to default values - <ESC>)3@

The command sets the secondary font to the user default (control panel) sec-
ondary font settings

Any secondary font settings made using PCL commands are discarded.

Select primary font by ID number - <ESC>(nX

The command sets the specified downloaded font to be the primary font.

If n matches the ID number of an available font, the primary font attributes
are set to that font’s attributes.

If the selected font is proportionally spaced, the current primary font pitch
setting is retained for possible future use.

When selecting a scalable font with this command, be sure to specify a point
size with the <ESC>(snV command. Otherwise, the current primary font
point size setting will be adopted.

Use the Font ID command to assign ID numbers to soft fonts.

If there is no available font with the selected ID number, the command is
ignored.

80

Select secondary font by ID number - <ESC>)nX

The command sets the specified downloaded font to be the secondary font.

It functions in the same way as the Select primary font by ID number com-
mand described above.

Select primary font symbol set - <ESC>(n
The command selects a symbol set for the primary font.

Symbol set may also be selected from the control panel.
The factory default symbol set for the primary font is Roman-8.

n is a one or two-digit number followed by a letter. A list of available sym-
bol sets is as follows.

ISO 60: Norwegian oD HP Spanish 1S
Roman Extension OE ISO 57: Chinese 2K
ISO 25: French OF ISO 17: Spanish 28
HP German 0G 1SO 2: IRV 2U
ISO 15: Italian 01 ISO 10: Swedish 3S
JIS ASCII 0K [SO 16: Portuguese 4S
ECMA-94 Latin | ON ISO 84: Portuguese 58
ISO 11: Swedish 0S ISO 85: Spanish 6S
US-ASCII ou Roman-8 8U
ISO 61: Norwegian 1D IBM-PC(US) 10U
ISO 4: UK 1E IBM-PC(Denmark/Norway) 11U
ISO 69: French IF | PC-850 12U
ISO 21: German 1G

81

Select secondary font symbol set - <ESC>) n
The command selects a symbol set for the secondary font.

Symbol set may also be selected from the control panel.
The factory default symbol set for the secondary font is Roman-8.

n is a one- or two-digit number followed by a letter. A list of available sym-
bol sets is shown under the description of the Select primary font symbol set
command.

Select primary font spacing type - <ESC>(snP

The command selects the spacing type for the primary font.
n =0 selects fixed spacing. #n = 1 selects proportional spacing.

If you specify proportional spacing and a proportionally spaced font is not
available in the current symbol set, a fixed pitch font will be selected
instead.

The user default primary font spacing is determined by the typeface you
select for the user default primary font. For example, a Courier font always
has fixed spacing, a Univers font is always proportionally spaced.

Select secondary font spacing type - <ESC>)snP

The command selects the spacing type for the secondary font. It functions in
the same way as the Select primary font spacing type command described
above.

82

Set primary font pitch - <ESC>(snH
The command sets the pitch of the primary font.

The pitch setting is specified in characters per inch.
Pitch only applies to monospaced fonts.

If you specify a pitch while the current primary font is proportionally
spaced, the setting is recorded. If you later select a monospaced font, your
pitch setting will take effect.

If there is no font available with the specified pitch, the nearest available
higher pitch setting is used instead. If no higher pitch setting is available, the
closest lower setting is used.

The pitch of a scalable monospaced font is adjusted so that the font height is
a multiple of 0.25 points and the ratio of character height to character width
is retained.

n is accurate to 2 decimal places.

The user default primary font pitch is determined by the user default pri-
mary font.

The factory default pitch setting is 10 characters per inch.

Set secondary font pitch - <ESC>)snH

The command sets the pitch of the secondary font.

It functions in the same way as the Set primary font pitch command
described above.

83

Set primary font point size - <ESC>(snV
The command sets the point size of the primary font.

One point = 1/72".

For scalable fonts n can range from 0.25 to 999.75. n is rounded to the near-
est 0.25.

For bitmap fonts the command will select a font with a point size within
0.25 points of #.

n is accurate to 2 decimal places.

If the specified height is unavailable, the closest available height is selected
instead.

When selecting a scalable font by ID number, be sure to specifty the point
size as well. Otherwise the current primary font point size value will be
used.

The point size attribute does not apply to monospaced scalable fonts, whose
height is determined by the current pitch setting. If you designate a primary
font point size while the current primary font is a monospaced scalable font,
the command has no immediate effect. However, the new point size setting
is recorded and is applied if you later select a proportionally spaced scalable
font or a bitmap font.

The user default primary font point size is determined by the user default
primary font.

The factory default primary font height is 12 point.

Set secondary font point size - <ESC>)snV
The command sets the point size of the secondary font.

It functions in the same way as the Set primary font point size command
described above.

The user default secondary font point size is determined by the user default
secondary font.

The factory default secondary font height is 12 point.

84

Select primary font style - <ESC>(snS
The command sets the primary font style

Set n to the number that corresponds to the style you wish to select.

Common style values are shown below.

0 Upright, solid 24 Expanded

1 Italic 32 Outline

4 Condensed 64 Inline

5 Condensed italic 128 Shadowed

8 Compressed (extra condensed) 160 Outline shadowed

In order to take effect straightaway, the specified style must exactly match
that of an available font.

If there is no font in the specified style which matches the current settings
for the higher priority font attributes (symbol set, spacing, pitch and point
size), the command has no immediate effect. However, the style selection is
recorded and is applied if changes to the higher priority font attributes allow
an exact match between your style selection and an available font.

The user default primary font style is determined by the current user default
primary font.

The factory default primary font style is upright, solid.

Select secondary font style - <€ESC>)snS
The command sets the secondary font style.

It functions in the same way as the Set primary font style command
described above.

The user default secondary font style is determined by the current user
default secondary font.

The factory default secondary font style is upright, solid.

85

Select primary font stroke weight - <ESC>(snB
The command selects the stroke weight for the primary font.

n is in the range —7 to 7. n=0 selects medium stroke weight, negative num-
bers select lighter stroke weights and positive numbers select bolder stroke
weights.

Stroke weight names and the corresponding values for n are shown below.

—7 | Ultra Thin —2 | Demi Light

Semi Light 4 Extra Bold

-6 | Extra Thin

—=5 | Thin 5 Black

—~4 | Extra Light 1 Semi Bold 6 Extra Black

Demi Bold 7 Ultra Block

Bold fonts have a stroke weight of 3.
Light fonts have a stroke weight of —3.

If there is no font with the selected stroke weight which matches the current
settings for the higher priority font attributes, the printer attempts to come as
close as possible as follows:

If you select a stroke weight in the range 0 to 7 which is unavailable, the
printer selects the closest available bolder stroke weight. If no bolder stroke
weight font is available, the closest lighter stroke weight font is selected.

If you select a stroke weight in the range —7 to —1 which is unavailable, the
printer will select the closest available lighter stroke weight. If no lighter
stroke weight font is available, the closest bolder stroke weight font is
selected.

In either case the stroke weight selection is recorded and is applied if
changes to the higher priority font attributes allow an exact match between
your stroke weight selection and an available font.

The user default primary font stroke weight is determined by the user
default primary font setting.

The factory default primary font stroke weight is medium.

86

Select secondary font stroke weight - <ESC>)snB
The command selects the stroke weight for the secondary font.

It functions in the same way as the Set primary font stroke weight command
described above.

The user default secondary font stroke weight is determined by the user
default secondary font setting.

The factory default secondary font stroke weight is medium.

Select primary font typeface - <ESC>(snT
The command specifies the typeface for the primary font.

The printer’s internal typefaces are Courier, Line Printer, Univers and CG
Times.

n is in the range 0 to 32767 and designates either the typeface base value, a
number between 0 and 511, or the typeface family value, a number which
identifies the typeface, the vending company and the font version.

The table below lists typefaces and their corresponding values.

Typeface Base value | Base value + family value
Line printer 0 4096
Courier 3 4099
Times 5 4101
Univers 52 4148

If the typeface you select is not available, the command is ignored.

The user default primary font typeface is determined by the user default pri-
mary font.

The factory default primary font typeface is Courier.

87

Select secondary font typeface - <ESC>)snT
The command specifies the typeface for the secondary font.

It functions in the same way as the Select primary font typeface command
described above.

The user default secondary font typeface is determined by the user default
secondary font.

The factory detfault secondary font typeface is Courter.

Turn underlining on - <ESC>&dnD

This command turns on underlining.
When underlining is on, all printed text is underlined.

Horizontal cursor movement from left to right on the logical page is also
underlined.

n =1 seleets fixed underlining, n = 3 selects floating underlining.

A fixed underline is drawn in the same place for each character of a given
font. 1f the font does not change, the line is continuous. The line i1s 5 dots
(1/60") below the tont’s baseline and 3 dots (1/100") thick.

A floating underline is drawn in the same place for every character on a line.
The underline is continuous irrespective of changes in font.

The underline and the underscore character may not align or be the same
thickness.

Turn underlining off - <ESC>&d@

The command turns underlining off.

Transparent print data - <ESC>&pnX <character data>
The command allows you to print characters that are normally unprintable.

n specifies the number of data bytes that follow the command.

All bytes are interpreted as character codes. The corresponding characters in
the current symbol set are printed.

If there is no character for a particular code, a space is printed instead.

This command is useful for printing special characters in symbol sets such as
the IBM All Character Set, in which every code corresponds to a character.

Control codes in the data have no effect.
88

4.10.13 Font selection examples
The following example sequence serves to illustrate some important points
about font selection.

First CG Times 10 point Bold in the Roman-8 symbol set is selected as the
primary font.

10 LPRINT CHRS(27) + "(8U";
20 LPRINT CHRS(27) + "{slplOv0s3b4101T";

Next, Univers 12 point in the Roman-8 symbol set is selected as the second-
ary font, and made the current font.

10 LPRINT CHRS(27) + ")8U";
20 LPRINT CHRS(27) + ")slpl2vO0sOb52T";
30 LPRINT CHRS (14);

Next, Courier 12 point Italic in the ISO 69: French symbol set is selected as
the secondary font.

10 LPRINT CHRS(27) + ")1F";
20 LPRINT CHRS(27) + ")s0pl0hl2vlisOb3T";

In this case the font selection command sequence must include a command
to select fixed spacing type. This is because spacing type has a higher prior-
ity than typeface. If fixed spacing selection were omitted, the previous
choice of proportional spacing (for Univers 12 point) would still be in force,
and the selection of Courier typetace would be ignored, since Courier type-
face fonts always employ fixed spacing.

Both height and pitch were specified, however, pitch alone would have been
sufficient.

Finally, 14 point Univers Light in the PC-8 symbol set is selected as the sec-
ondary font. This assumes that a scalable Univers Light font has been down-
loaded or is on an installed cartridge.

10 LPRINT CHRS(27) + ")10U";
20 LPRINT CHRS$(27) + ")slpldv0s—3b52T";

If Univers Light is unavailable, but a light font in a different typeface, for
example Helvetica Light. is available, then Helvetica Light will be selected
-as the secondary font, rather than a Univers font: stroke weight having a
higher priority than typeface. It no light font is available in any typeface,
Univers Medium will be selected.

89

4.10.14 Creating and downloading fonts
You can download both commercial fonts and fonts you design yourself to
the printer using PCL. commands.

Downloaded fonts can also be controlled using the commands described in
this section.

Downloaded fonts are either temporary or permanent. Temporary fonts are
deleted when the printer is reset, permanent fonts are retained. Fonts are
temporary by default. Use the Font control command to make a soft font
permanent.

Font ID - <ESC>*cnD

The command either identifies an existing soft font for processing by the
Font control command, or assigns a number to a new soft font.

If you issue this command and then download a font to the printer, the num-
ber is assigned to the new font. If a font with that ID number was already in
the printer’s memory, it is overwritten by the new font.

You can also use the command to specify the ID of a font already in the
printer’s memory in order to perform an operation on it with the Font control
command.

Font control - <ESC>*¢cnF

The command performs the specified operation on one or more downloaded
fonts.

For single font operations, the font is identified by the Font ID command.
n =0 deletes all downloaded fonts from the printer’s memory.

n = 1 deletes all temporary fonts from memory.

n =2 deletes a selected font from memory.

n = 3 deletes a specified character from the selected font. The command
deletes the character specified by the most recent Character code command.

n = 4 makes the selected font temporary.
n =5 makes the selected font permanent.

n = 6 makes a copy of the current font and assigns to it the most recently
specified font ID number.

90

Sending a font to the printer involves sending a font descriptor, a block of
data describing the font, followed by a character code, character descriptor
and character data for every character in the font.

Characters are designed on a grid-shaped character cell. Its position on the
grid determines a character’s size, shape and alignment to other characters
in the font.

Soft fonts created by the user are either in bitmap format or Intellifont scal-
able format. The Intellifont format is beyond the scope of this manual. The
bitmap format is described in the following section.

The sequence of commands is as follows:

Send font descriptor
Send character code
Send character descriptor
<data>

Send character code
Send character descriptor
<data>

Send character code
Send character descriptor
<data>

...etc

91

Send font descriptor - <ESC>)snW <descriptor>
The command sends the font descriptor to the printer.

n specifies the length of the font descriptor in bytes.

The font descriptor block contains attributes common to all the characters in
the font.

Attributes are represented using 8 different data types. The type of each
attribute field is indicated by the initials shown in the table.

B Boolean SI Signed integer

UB Unsigned byte ULI | Unsigned long integer
SB Signed byte SLI | Signed long integer
Ul Unsigned integer ASC | ASCII string

The font descriptor block for bitmap fonts is shown below.

Byte | MSB LSB Byte | MSB LSB

0 Font descriptor size (64) 26 Typeface MSB Serif style

2 Descriptor format (0) Font type 28 Quality Placement

4 Style MSB Reserved 30 Underline distance Undertine height
6 Baseline position 32 Text height

8 Cell width 34 Text width

10 Cell height 36 First code

12 Orientation Spacing 38 Last code

14 Symbol set 40 Pitch extended Height extended
16 Pitch 42 Cap height

18 Height 44-47 Font number

20 x-Height 48-63 Font name

22 Width type Style LSB 64 Copyright (optional)

24 Stroke weight Typeface LSB

The significance of the fields is as follows:

Font descriptor size (UI) - The size in bytes of the font descriptor block.

for bitmap format.

64

92

Descriptor format (UB) - O for bitmap format.

Font type (UB) - 0, 1 or 2. The value sets the range of symbols that can be
printed.

Font type Printable codes

0 32-127
! 32— 127 and 160 - 255
2 0-255

To print characters 0, 7 - 15 and 27 in mode 2 use the Transparent print data
command.

Style MSB (Ul) - Combined with the Style LSB to form the style word.
Style word = posture + (4 x width) + (32 X structure)

Value Posture

0 Upright

1 Italic

2 Alternate italic

3 Reserved

Value Width

0 Normal

1 Condensed

2 Compressed (Extra Condensed)
3 Extra Compressed

4 Ultra Compressed

5 Reserved

6 Extended or Expanded

7 Extra Extended or Extra Expanded

93

Value Structure Value Structure

0 Solid 7 Contour with shadow
1 Outline §-11 Patterned

2 In-line 12 — 15 | Patterned with shadow
3 | Contour 16 Inverse

4 Solid with shadow 17 Inverse in open border
5 Outline with shadow 18 ~31 | Reserved

6 In-line with shadow

Baseline position (UT) - This field is ignored by the printer.
Cell width (UT) - This field is ignored by the printer.
Cell height (UI) - This field is ignored by the printer.

Orientation (UB) - The font’s orientation relative to the current logical
page orientation.

Value Orientation

0 Portrait

1 Landscape

2 Reverse portrait

3 Reverse landscape

Spacing (B) - The spacing type, O (fixed pitch) or | (proportional spacing).

Symbol set (UI) - The font’s symbol set. A symbol set ID consists of a num-
ber and a letter. Symbol set attribute = (32 X number) + ASCII value of letter
— 64. Symbol set IDs are shown in the table with the description of the
Select primary font symbol set command.

Pitch (UD) - For bitmap fonts this attribute is combined with Pitch Extended
to specify the font’s pitch (for proportionally spaced fonts, the width of a
space). This attribute field holds the integer part of the font’s pitch in
1/1200", e.g. for a 17 cpi font the value would be 70 (1200/17 = 70.588).

94

Height (UI) - For bitmap fonts this attribute is combined with Height
Extended to specify the height of the font. This attribute field holds the inte-
ger part of the font’s height in 1/1200", e.g. for a 10 point font the value
would be 166 (1200 x 10/72 = 166.667).

x-height (UT) - This field is ignored for bitmap fonts.
Width type (SB) - This field is ignored by the printer.
Style LSB (UB) - See Style MSB.

Stroke weight (SB) - Values can be from —7 to +7. O selects the normal
stroke width, —7 the lightest possible stroke weight and 7 the boldest.

Stroke weight Stroke weight Stroke weight
-7 | Ultra Thin -2 | Demi Light Bold
—6 | Extra Thin —~1 | Semi Light Extra Bold
-5 | Thin 0 Medium (Book or Text) Black
—4 | Extra Light 1 Semi Bold Extra Black
-3 | Light 2 Demi Bold Ultra Block

Typeface family (UI) ~ The field is made up of the Typeface MSB and LSB
and identifies the typeface by number. The typeface family field is divided
into four parts as follows: bits 0 to 8 hold the typeface base value, bits 9 and
10 hold the version number, bits 11 to 14 identify the vendor and bit 15 is
always 0.

T

15 14 10 8 0

A,

Vendor Version

—
Typeface base value

95

Serif style (UB) - Bits 6 and 7 of this byte specify the serif style of the font.

Value Style

64 - 127 Sans serif

128 — 191 Serif

192 - 255 Reserved

Quality (UB) - This field is ignored by the printer.
Placement (SB) - This field is ignored by the printer.

Underline distance (SB) - For bitmap fonts the field specifies the distance
from the baseline to the top row of the underline. A positive value specifies
an underline above the baseline, a negative value specifies one below the
baseline. A value of O specifies an underline on the baseline.

Underline height (UB) - This field is ignored by the printer. Bitmap fonts
always print an underline 3 dots thick.

Text height (UI) - This field is ignored by the printer
Text width (UI) - This field is ignored by the printer
First code (UI) - This field is ignored by the printer

Last code (UI) - This field specifies the character code of the last (highest
numbered) character in the font. The range of printable codes for each font
type is shown in the table. However, the value may be greater than the last
code in the symbol set specified by the Font Type byte, since there may be
components of compound characters that are not part of the specified sym-
bol set but which still must be downloaded.

Font type Highest printable code
0 127
1 255
2 255

96

Pitch extended (UB) - For bitmap fonts this field holds the fractional part of
the character pitch. For a 17 cpi font the value is calculated as follows:
1200/17 = 70.588, the Pitch byte takes the value 70, Pitch Extended = 0.588
% 256 = 150 (rounded down).

Height extended (UB) - For bitmap fonts this field holds the fractional part
of the height of the font. For a 10 point font the value is calculated as fol-
lows:1200 x 10/72 = 166.667, the Height byte takes the value 166, Height
Extended = 0.667 x 256 = 170 (after rounding down).

Cap height data (U]) - This field is ignored by the printer
Font number (ULI) - For bitmap fonts this field is ignored.

Font name (ASC) - This 16-byte field can be used to specify the name of
the font’s typeface. The name is used when the printer prints out a list of
available fonts.

97

Send character code - <ESC>*cnE
This command sends a character code to the printer.

n specifies the code.
The character is defined by the Character descriptor command.

The command can also select a character for deletion from a font with the
Font control command.

Send character descriptor and data
- <ESC>(snW <descriptor and data>

The command sends to the printer a character descriptor block followed by
the data that makes up the character.

n is the total number of bytes, both descriptor and data, that follow the com-
mand.

n can be up to 32767. If it takes more than 32767 bytes to describe a charac-
ter, split the description into blocks of 32767 bytes or less, and use the com-
mand to send each block separately. A character descriptor field specifies
whether the data is the first block of a character description or a continua-
tion.

The character descriptor for the first block of data describing a bitmap for-
mat character is as follows:

Byte | MSB LSB

0 Format (4) Continuation (0)
2 Descriptor size (14) Class (1)

4 Orientation Reserved (0)

6 Left offset

8 Top offset

10 Character width

12 Character height

14" | Delta X

98

The character descriptor for a continuation block is as follows:

Byte | MSB LSB

0 Format (4) Continuation (not 0)

The bytes following the header are the character’s raster data.

Character descriptor attributes are represented using 5 different data types.
The data type of each attribute field is indicated by the initials shown in the
table.

B Boolean

UB | Unsigned byte

SB Signed byte

Ul Unsigned integer

SI Signed integer

Format (UB) - 4 for bitmap fonts. If the setting does not match the descrip-
tor format setting in the font descriptor, the character is not downloaded.

Continuation (B) - This field specifies whether the data block describes a
new character (0) or is the continuation of a character description (1). If the
continuation byte is 1, all subsequent bytes are interpreted as character data.

Descriptor size (UB) - 14 for bitmap fonts.

Class (UB) - 1 for bitmap fonts, 2 for compressed bitmap fonts. Ordinary
bitmap fonts are sent as uncompressed raster data. Compressed bitmap font
character data is encoded as follows.

The first byte of a line of data specifies the number of times that the line is
repeated. The second byte indicates the number of successive white pixels at
the start of the line. The third byte indicates the number of successive black
pixels that follow the white pixels. The fourth byte indicates the number of
successive white pixels following the black etc. Odd- and even-numbered
bytes specify the number of successive black and white pixels making up
the line. If there are more than 255 successive pixels of one color, this is rep-
resented by a byte set to 255, followed by a byte set to 0, followed by a byte

99

indicating the number of pixels of the color in excess of 255. The width of a
line is determined by the Character width attribute. The number of pixels in
each row must equal the Character width attribute setting.

Orientation (UB) - This setting determines the orientation of the character.
0 specifies portrait, 1 specifies landscape, 2 specifies reverse portrait and 3,
reverse landscape.

If the setting does not match the Orientation attribute setting in the font
descriptor block, the character is not downloaded.

Left offset (SI) - The horizontal distance between the character reference
point (cursor position) and the leftmost character dot on the character cell
grid in the physical page coordinate system. The value must be in the range
—16384 to 16383.

Top offset (SI) - The distance between the character reference point (cursor
position) and the topmost character dot on the character cell grid in the
physical page coordinate system. The value must be in the range —16384 to
16383.

Character width (UI) - For bitmap fonts the attribute setting specifies the
width of the character in the physical page orientation in dots. The value
must be in the range 1 to 16383.

Character height (UI) - The setting specifies the height of the character in
the physical page orientation in dots. The value must be in the range 1 to
16383.

Delta X (UI) - The setting specifies the horizontal distance the cursor moves
from the character reference point after the character has been printed. The
value is specified in units of 1/1200" and must be in the range 32768 to
32767.

The character data follows these header bytes. Bitmap characters are
encoded as raster data. The data bytes build up an image of the character
from left to right, from top to bottom. The Character width and Character
height attribute settings determine the dimensions of the character cell grid.

100

4.11 Graphics
4.11.1 The print model

Using PCL commands you can control the way graphic elements combine
on the page. The model used to describe the process details how a source
image (an image to be drawn) is applied to a destination image (an image
that has already been drawn).

The printer constructs each page in its memory before printing it out. Thus,
at a given time, it will have received some text and graphics commands and
will be about to receive more. The data received so far make up the destina-
tion image.

The source image may consist of a rectangle, a raster image or text. It con-
sists of white areas and patterned areas. The pattern may be solid black, a
shade of gray, or may itself be comprised of white and non-white areas. For
example, the pattern may consist of grid of lines. You can specify the way in
which you want the white and patterned areas of the whole source image
and the white and non-white areas of the source image’s pattern to interact
with the destination image to produce the final result.

4.11.2 Source transparency

The source image can be either transparent or opaque.

When a transparent source image is superimposed on the destination image,
the destination image is visible through the white (non-patterned) parts of
the source image.

When an opaque source image is superimposed on the destination image, no
part of the destination image is visible through the source image.

101

4.11.3 Pattern transparency
The source image’s pattern can also be either transparent or opaque.

When a source image with a transparent pattern is superimposed on the des-
tination image, the destination image is visible through any white parts of
the patterned areas of the source image. This is true even if the source image
itself is opaque.

When a source image with an opaque pattern is superimposed on the desti-
nation image, no part of the destination image is visible through the pat-
terned areas of the source image.

Black-filled or gray scale patterns do not have any white areas, hence no part
of the destination image is visible through the pattern, irrespective of the
pattern transparency setting.

White-filled and cross-hatched patterns are comprised wholly or partly of
white areas, however, a white filled rectangle constructed with the Draw
filled rectangle command is always opaque.

Source Destination Result
Py vy ; B
Transparent source = ot I o %' S
Transparent pattern - . IR — R R
i L L
Transparent source = ‘ =
— v | —
Opaque pattern = =
il i .
= T
i\ i
—
Opaque source = ; % ‘
Transparent pattern — i ! ‘
Opaque source = R =
— : . —
Opaque pattern = \ b =

102

Set source transparency - <ESC>*vnN
The command specifies the source image transparency.

n = 0 selects transparent mode.
n = 1 selects opaque mode.

In transparent mode the destination image is visible through the white (non-
patterned) areas of the source image after the source image has been super-
imposed on it.

In opaque mode the destination image is not visible through the white (non-
patterned) areas of the source image after the source image has been super-
imposed on it.

Set pattern transparency - <ESC>*vnO
The command specifies the pattern transparency.

n =0 selects transparent mode.
n = 1 selects opaque mode.

In transparent mode the destination image is visible through the white parts
of the patterned areas of the source image after the source image has been
superimposed on it.

In opaque mode the destination image is not visible through the white parts
of the patterned areas of the source image after the source image has been
superimposed on it.

A white-filled rectangle drawn with the Draw filled rectangle command is
always opaque, no matter what the pattern transparency setting.

103

Set area fill identity - <ESC>*¢nG

The command selects a cross-hatch or gray scale pattern which can then be
selected with the Set pattern type command.

Select a cross-hatch pattern by setting # to the appropriate value (1 - 6).

) (#6)

Select a shade of gray by setting » to the gray scale percentage you require
(1 - 100). n selects the shade whose percentage range it falls in.

(1-2%) (3-10%) (11-20%) (21-35%)

(36-55%) (56-80%) (81-99%) (100%)

Having selected a pattern or gray scale, you can enable it for printing with
the Set pattern type command.

104

Set pattern type - <ESC>*vnT

The command selects a fill pattern type: black, white, gray scale or cross-
hatch.

Text and graphics are printed with the selected fill.
n = 0 selects solid black.
n =1 selects white.

n =2 selects a gray scale. You must first have selected a gray scale percent-
age (0 — 100%) using the Set area fill identity command.

n = 3 selects a cross-hatch pattern. You must first have selected a cross-hatch
pattern using the Set area fill identity command.

4.11.4 Rectangle graphics

Using the commands described in this section you can draw filled rectan-
gles. The rectangles have no outline: they are simply blocks of a given shade
or pattern.

When drawing a filled rectangle position the cursor at the point where the
top left hand corner of the rectangie will be. Then specify the height and
width of the rectangle using the Set rectangle height and Set rectangle width
commands. You can now draw the rectangle with the Draw filled rectangle
command.

After the rectangle has been drawn the cursor position is still the top left-
hand corner of the rectangle.

If the current pattern is a cross-hatch pattern, the current pattern transpar-
ency setting determines whether the destination image is visible through the
rectangle. The source transparency has no significance, since the source
image consists of a patterned area without any accompanying white space.

A white-filled rectangle is always opaque, just like a black or gray scale
filled rectangle, no matter what the current pattern transparency setting. A
white rectangle appears simply as a solid white block.

Set rectangle width in dots - <ESC>*cnA
The command specifies the width in dots of a rectangle to be printed.

n sets the width in dots.

105

Set rectangle width in decipoints - <ESC>*cnH

The command specifies the width in decipoints of the rectangle to be
printed.

n sets the width decipoints.

Set rectangle height in dots - <ESC>*cnB
The command specifies the height in dots of the rectangle to be printed.

n sets the height in dots.

Set rectangle height in decipoints - <ESC>*¢cnV

The command specifies the height in decipoints of the rectangle to be
printed.

n sets the height in decipoints.

Draw filled rectangle - <ESC>*cnP
The command draws a rectangle filled with a pattern of the specified fill
type.

n = 0 selects solid black as the fill.
n = 1 selects white as the fill.

n = 2 selects the gray scale selected by the Set area fill identity command as
the fill.

n = 3 selects the cross-hatch pattern specified by the Set area fill identity
command as the fill.

n =5 selects the current pattern as specified by the most recent Set pattern
type command and the Set Area Fill Identity command which preceded it.

A white-filled rectangle is always opaque. The destination image is not visi-
ble through it. ‘

106

4.11.5 Raster graphics

A raster graphic consists of a matrix of white and black dots. The image is
represented by a matrix of zeroes and ones which correspond to the white
and black dots comprising the image. The areas of the image represented by
ones (the non-white areas) are output using the current pattern when the
image is printed.

The source transparency, pattern transparency and pattern settings affect ras-
ter images as described in the Print model.

Transmit raster data a line at a time using Send raster data commands. Pre-
cede the Send raster data commands with a Start raster transfer command
and terminate the transmission with an End raster transfer command.

It is a good idea to define a rectangular raster area within which the image is
to lie. Specify the height and width of the area with the Set raster area height
and Set raster area width commands. A raster area is not strictly necessary,
however, it often facilitates the transmission of images.

If you have defined a raster area you can use the Raster y-offset command to
skip any all-white lines. The printer automatically prints the number of white
lines which you specify. You can also omit trailing zeroes representing white
space on the end of a line. The printer pads out the line with white space up to
the edge of the raster area. The printer will also pad out the bottom of the ras-
ter area with white space, obviating the need to transmit trailing blank rows.
Any raster data that would lie outside the raster area is not printed.

Raster images can consist of a lot of numerical data. There are a number of
ways to compress the data using the Set compression mode command.

After the image has been printed, the cursor is positioned at the bottom
right-hand corner of the raster area or, if no raster area was defined, at the
end of the last transmitted row of data.

Set raster resolution - <ESC>*tnR
The command sets the raster image resolution in dots per inch.

n =175, 100, 150 or 300.

Use this command before you the Start Raster Graphics command, otherwise
it does not take effect until after the next End Raster Graphics command.

Lower resolution images consume less printer memory.

The factory default raster resolution is 75 dots per inch.

107

Set raster image orientation - <ESC>*rnF

The command specifies the orientation in which a raster image will be
printed with respect to the logical page orientation.

n = (causes the image to be printed in the current logical page orientation.

n = 3 causes the image to be printed in the current physical page orientation,
irrespective of the logical page orientation.

Use this command before you the Start Raster Graphics command, other-
wise it does not take effect until after the next End Raster Graphics com-
mand.

The factory default setting is the current physical page orientation.

Set raster area height - <ESC>*rnT

The command determines the height of the raster area.
n specifies the height in raster rows.

The height of single raster row is either 1/300", 1/150", 1/100" or 1/75" as
determined by the current raster resolution setting.

A change in the raster resolution setting will change the physical height of
the raster area.

Use this command before you use the Start Raster Graphics command, oth-
erwise the setting does not take effect until after the next End Raster Graph-
ics command.

Set raster area width - <ESC>*rnS
The command determines the width of the raster area.

n specifies the width in raster rows.

The width of a single raster dot is either 1/300", 1/150", 1/100" or 1/75" as
determined by the current raster resolution setting.

A change in the raster resolution setting will change the physical width of
the raster area.

Use this command before you use the Start Raster Graphics command, oth-
erwise the setting does not take effect until after the next End Raster Graph-
ics command.

108

Set raster y-offset - <ESC>*bnY

The command specifies how many rows should be skipped.

This command tells the printer to insert the specified number of white lines
in the image.

n is in the range 0 — 32767

Use this command after a Start Raster Graphics command and before an
End Raster Graphics command, otherwise it will have no effect.

Set compression mode - <ESC>*bnM

The command specifies the compression method that has been used to
encode a raster image.

n = () specifies no compression.

n = 1 selects run-length encoding.

n = 2 selects tagged image file format (TIFF) encoding.
n = 3 selects delta row compression.

Run-length encoding

Data bytes are transmitted in pairs. The first byte of a pair specifies the num-
ber of times the second byte is repeated successively. The second byte is ras-
ter image data. If the first byte has the value x, the second byte is repeated
x+1 times.

Tagged image file format

An image consists of groups of bytes, each group consisting of a control
byte followed by one or more data bytes.

The control byte specifies how many data bytes follow and how they are to
be interpreted.

If the two’s complement value of the control byte is between ~1 and ~127,
the byte which follows is successively repeated. The number of times the
data byte is repeated equals the absolute value of the control byte plus one:
e.g. if the control byte’s two’s complement value is —31 (11100001), the
data byte is repeated 32 times.

109

If the two’s complement value of the control byte is between 0 and 127, the
bytes which follow are normal uncompressed raster data. The number of
data bytes is the value of the control byte plus one: e.g. if the control byte is
30, the following 31 bytes are unencoded raster data.

A control byte with two’s complement value —128 (binary 1000000) is
ignored and the byte which follows is interpreted as a control byte.

Delta row compression

An image is transmitted as a sequence of groups of bytes, each group con-
sisting of a command byte followed by one or more data bytes. Byte groups
specify a raster row by modifying the last transmitted row (the seed row).

The command byte identifies a sequence of bytes in the seed row that needs
to be changed. The data bytes that follow replace the specified seed row
sequence. The number of bytes to be changed equals the value held in the
top 3 bits of the command byte plus 1. The position in the row of the first
byte of the seed row sequence to be changed equals the value held in the
lower 5 bits of the command byte plus 1. For example, if the command byte
is 222 (binary 11011110), the 31st—37th bytes of the seed row will be
replaced by the 7 data bytes which follow.

If the lower 5 bits are 11111 (31 decimal), the following byte (all 8 bits) is
added to 32 to calculate the total offset. If this offset byte equals 255, the
next byte is also treated as a further offset value and is added to the offset
total. This process continues until a byte whose value is less than 255 is
encountered. This byte is treated as the final byte in the offset sum.

Each row is specified in terms of the preceding row. If there is more than one
byte sequence in a raster row that must be changed, the second (and subse-
quent) offsets are counted from the first byte following the last byte that was
changed.

When a complete row has been transmitted it becomes the seed row.

110

Start raster transfer - <ESC>*rnA
The command signals the start of a transmission of raster data to the printer.

n = 0 prints the image starting at the left edge of the logical page.
n = 1 prints the image starting from the current cursor position.

The transfer continues until an End raster transfer command or until a com-
mand other than Transfer raster data, Set compression mode, or Set raster y-
offset is transmitted.

Transfer raster data - <ESC>*bnW<data>
The command transmits a row of raster data to the printer.

n specifies the number of bytes to be transmitted.

If more data is transmitted than will fitted onto one raster area row, the line
is clipped.

End raster transfer - <ESC>*rB
The command signals the end of a transmission of raster data to the printer.

If a raster area has been defined, the cursor is positioned one raster dot
below the raster area.

The delta row compression seed row is set to all zeroes.

Any raster settings made since the last Start raster transfer command now
take effect.

111

4.12 Macros

A macro is a predefined series of PCL commands which can be downloaded
to the printer and run automatically with a single command.

A typical macro application would be a set of commands to draw a company
logo in a set position on a page.

Downloaded macros take up printer memory in the same way as down-
loaded fonts do. However, some macros are available on cartridge, allowing
you to use macros without sacrificing memory.

Assign macros unique ID numbers with which they can then be referenced.
Cartridge macros already have ID numbers assigned to them.

A macro cannot enter GL.2 mode, change the size or location of the picture
frame or change the GL2 plot size.

The <ESC> E Reset command cannot be used within a macro.

All macros in use at a given time must have a unique ID number. If a car-
tridge macro has the same ID number as a downloaded macro, the down-
loaded macro takes precedence: the cartridge macro cannot be accessed
until you delete the downloaded macro. To avoid further conflict the deleted
macro could be assigned a different ID number and redownloaded.

One macro can call another. Only two levels of nesting are allowed.
Macros can be either temporary or permanent.

A Reset deletes all temporary macros from the printer’s memory.

112

4.12.1 Running Macros

Macros can be executed, called or enabled for overlay.

When a macro is executed, it uses the current modified print environment.
Any changes it makes to the environment are permanent.

A called macro also uses the current modified print environment. However,
changes are not retained when the macro has finished running.

A macro enabled for overlay automatically runs as the final operation every
time a page is printed. Overlay macros use the macro overlay environment:
a combination of the user default environment and the modified print envi-
ronment. The macro overlay environment is only in effect while the macro is
running.

The macro overlay environment consists of the user default environment set-
tings for all features except those listed below, which retain their current
modified print environment settings.

Page length Paper source

Page size Number of copies
Orientation Cursor position stack
Registration

See the Environments section for a description of the different printer envi-
ronments.

4.12.2 Macro definitions

A macro definition consists of three macro commands: Macro ID, Macro
Control (start macro definition) and Macro Control (end macro definition),
and the PCL commands which the macro will perform.

The sequence of commands is as follows:

Macro 1D command

Macro Control (start macro definition) command
PCL commands

Macro Control (end macro definition) command

The sequence of PCL commands may contain the Macro Control (execute
macro) or Macro Control (call macro) command, invoking another macro.
No other macro commands are allowed within the definition.

113

4.12.3 Macro commands
Macro ID - <ESC>&fnY

The command assigns an ID number to a macro that is to be downloaded, or
identifies a macro in the printer’s memory.

Before downloading a macro, use this command to assign an ID to it. If you
use a number belonging to a macro already in printer memory, the new
macro overwrites the existing macro.

When using the Macro control command to perform an operation on a
macro already in the printer’s memory, for example, making the macro per-
manent, use this command to select it.

The factory default macro ID number is 0.

Macro control - <ESC>&FnX

The command performs a specific action on one or all macros. When per-
forming an action on a single macro first select the macro using the Macro
ID command, then use this command to perform the appropriate action.

The start and end macro definition options apply to a macro to be down-
loaded, all other options apply to a macro (or all macros) in memory.

n specifies the operation to be performed as follows:
n = 0 starts macro definition

This option signals the start of a macro definition.

n = 1 end$ macro definition

This option signals the end of a macro definition.

n =2 executes a macro

Changes that the macro makes to the modified print environment, e.g. font
selection, are retained after the macro has finished running.

n = 3 calls a macro.

Changes that the macro makes to the modified print environment are tempo-
rary and are not retained after the macro has finished running.

n =4 enables a macro for overlay.

114

The macro is run as the final operation each time a page is printed.
n = 5 disables an overlaid macro.

n = 6 deletes all macros from the printer’s memory.

n = 7 deletes all temporary macros from the printer’s memory.

All macros are temporary unless they have been made permanent with the
Make macro permanent command.

n = 8 deletes a macro from the printer’s memory.

n =9 makes a macro temporary.

Temporary macros are not retained after a Reset.
This command only applies to downloaded macros.
n = 10 makes a macro permanent.

Permanent macros are retained after a Reset.

This command only applies to downloaded macros.

115

MEMO

116

CHAPTER

Vector graphics 5

Printer Control Language does not contain any vector graphics commands
of its own. However, PCL commands allow you to switch from PCL mode
into GL2 vector graphics mode and use the powerful vector drawing com-
mands of the GL2 graphics language. Originally devised for pen-plotters,
GL2 is a powerful drawing tool that precisely defines images with reference
to a grid coordinate system, and includes commands to draw lines and
shapes, apply shading patterns and fills to shapes, and handle text. In GL.2
mode, you can draw images to appear on the same page as text and graphics
generated in PCL mode. On completion of vector graphics operations you
can then switch back into PCL mode.

5.1 GL2 concepts

The picture frame is the rectangular area of the page in which GL2 graphic
images can appear. The default picture frame for a given page size is the
same as the default text area. Picture frame dimensions for the different page
sizes are given in tables on pages 45 and 46 of Chapter 4. Before entering
GL2 mode you can specify the size and location of the picture frame using
PCL commands. Specify the size and location in terms of the anchor point
(the top left-hand corner of the picture frame) and height and width.

The GL2 coordinate system has its default origin in the bottom left-hand
corner of the picture frame. Hence, in contrast to the PCL coordinate sys-
tem, the x-coordinate value of the pen position increases as it moves up the
page. The default units, known -as plotter units, are 1/1016" (0.025mm) on
both axes. Alternatively, you can specify a more convenient unit size using
the SC command. These custom units are known as user units and you can
define x- and y-axis user units of different sizes. The printer automatically
converts user units to plotter units at print time. The units in use at a particu-
lar time (plotter or user) are called the current units.

117

GL2 drawing commands can be described using the notion of an imaginary
pen, which can be either “up” or “down”. When the pen is “down”, a GL2
plotting command, e.g. the command to move the pen to a specified coordi-
nate location, will draw a line on the page. When the pen is “up”, the same
command will not draw a line. Thus, when the pen is in the “up” state, you
can position it without marking the page.

Two GL2 commands, the PU and PD commands, allow you to set the pen to
be “up” or “down” before you issue a command to move the pen.

Some GL2 commands always draw on the page, irtespective of the current
pen state (“up” or “down”). Hence you do not need to precede these com-
mands with a “pen down” instruction.

GL2 makes use of two reference scaling points, P1 and P2, whose default
positions are the bottom left- and top right-hand corners of the picture
frame. The IP and IR commands alter the positions of P1 and P2.

By altering the relative positions of P1 and P2 and scaling the user units with
the SC command, you can dynamically rotate, reflect, skew and scale images.

Pen movement is either absolute or relative. Absolute movement coordi-
nates are specified with reference to P1, the origin of the coordinate system.
Relative movement coordinates are specified relative to the current pen posi-
tion. Coordinates are always expressed in the current units.

The input window, also known as the soft clip limits, is a user-defined rect-
angular window, outside which GL2 graphic output cannot appear. In this
respect, it is like the picture frame, however, the difference is that you can
define an input window in GL2 mode, whereas you can only modify the pic-
ture frame in PCL mode.

118

The area formed by the overlapping of the printable area, logical page, picture
frame and input window is called the effective window. Only GL2 output that
lies within the effective window will appear on the printed page. The printable
area and the logical page are defined in “The page” in Chapter 4.

Physical page
Logical page

:u\ Printable area

____Input window

—1___Effective window

Picture frame

5.2 Managing GL2 mode from PCL mode

The PCL commands in this section allow you to switch back and forth
between PCL and GL2 mode, to determine the size and position of the pic-
ture frame, and to scale a GL2 image to fit the area you require. In some
instances scaling is performed automatically.

If you do not specify picture frame position, height and width, the default
picture frame is used. Default picture frame sizes are shown on pages 45 and
45 of Chapter 4.

The <ESC>*c0T command makes the current PCL cursor position the pic-
ture frame anchor point. The <ESC>*cnX command sets the picture frame
height and the <ESC>*cnY command sets the width.

119

5.2.1 Scaling an imported image

An imported image will automatically be scaled to fit the picture frame if
the image is page-size independent. An image is page-size independent if
the GL2 code that defines it meets the following conditions:

1) User units are used exclusively: 1.e. a SC scaling command must precede
all plotting commands and any others that take current unit parameters.

2)All peh movement is relative: i.e. only relative plotting commands may be
used.

3) All measurements are relative: character size, line type pattern length and
pen width must be specified as relative distances.

4)No commands that imply absolute pen movement are used: i.e. any com-
mand, such as IP or PA, that has a relative equivalent (IR and PR) may not
be used, even without parameters.

If the image you want to import does not satisfy the above conditions, use
the <ESC>*cnK and <ESC>*enL plot size commands to specify the hori-
zontal and vertical dimensions of the original image. The printer will then
scale the x- and y-axis dimensions so that the image fits the picture frame
exactly. If you fail to specify the original height and width, the imported
image is printed actual size, and may be clipped as a result.

If the image you want to import is the same size as the picture frame, you do
not need to use the plot size commands.

120

5.2.2 Set-up commands for GL2 mode
Set picture frame anchor point - <ESC>*cOT

The command sets the picture frame anchor point to the current cursor posi-
tion.

First position the cursor using the appropriate PCL commands, then use the
command to make the current position the anchor point.

The command has the following effects on the GL2 vector graphics state.

The scaling points, P1 and P2, are set to their respective default positions,
the bottom left-hand and top right-hand corners of the picture frame.

The input window is set to its default position, the picture frame limits.
The polygon buffer is emptied.
The GL2 cursor is set to its default position, P1.

Set picture frame vertical size - <ESC>*cnY
The command sets the height of the picture frame in decipoints (1/7207).

The command has the same effects on the GL2 vector graphics state as the
Set picture frame anchor point command.

Set picture frame horizontal size - <ESC>*cnX
The command sets the width of the picture frame in decipoints (1/7207).

The command has the same effects on the GL2 vector graphics state as the
Set picture frame anchor point command.

Specify vertical plot size - <ESC>*cnl
The command specifies the height in inches of an imported image.

Only use this command if importing an existing image.
n must be between 0 and 32767 and is accurate to four decimal places.

The imported graphic is scaled vertically to fit the height of the picture
frame.

121

Specify horizontal plot size - <ESC>*cnK
The command specifies the width in inches of an imported image.

Only use this command if importing an existing image.
n must be between 0 and 32767 and is accurate to four decimal places.

The imported graphic is scaled horizontally to fit the width of the picture
frame.

Enter GL2 mode - <ESC>%nB

The command switches the printer from PCL mode into GL2 graphics
mode.

n = 0 positions the pen at the previous GL2 pen position. If this is the first
switch into GL2 mode since a Reset or since the printer was switched on,
the pen is positioned at the lower left-hand corner of the picture frame.

n = | positions the pen at the current PCL cursor position.

All commands that follow are interpreted as GL2 vector graphics commands
until the printer receives an <ESC> E Reset, <ESC>%nA Enter PCL mode
or <ESC> [E n Change emulation mode command, or until a control panel
reset is performed.

When the printer is first switched into GL2 graphics mode after switch-on or
a reset, all GL2 settings have their default values. These are listed with the
description of the IN command on page 128.

Enter PCL mode - <ESC>%nA

The command switches the printer from GL2 graphics mode back into PCL
mode.

n = 0 positions the PCL cursor at the position it was in when the printer
entered GL2 graphics mode.

n = 1 positions the PCL cursor at the current GL2 pen position.
All commands that follow are interpreted as PCL commands.

122

5.3 GL2 syntax

GL2 commands can consist of up to four components: a two-letter mne-
monic, parameters, separator characters and a terminating character.

The mnemonic is an abbreviation for the name of the command and helps
remind you of the command’s purpose.

Almost all GL.2 commands can have one or more numerical parameters.

Parameters must be delimited from one another by separators: valid separa-
tors are a space, a comma, and the + and — signs.

A terminator is not usually necessary, though a semi-colon may be used to
terminate any command explicitly. The final command used before quitting
GL2 mode must be terminated by a semi-colon, as must the PE Polyline
encode command. In all other instances, however, a command may be
implicitly terminated by the first letter of the mnemonic of the command

PR100,200;
NERR

mnemonic separator terminator

parameter parameter

In this chapter command mnemonics are shown in bold upright type and
parameters are shown in italics. Optional elements, i.e. optional parameters
and the terminator, are enclosed in square brackets. Parameters that may
optionally be repeated a number of times are followed by dots *...".

Parameters fall into the following five format categories:

Integer - any integer from 239 10 230_1. Real numbers are rounded to the
nearest integer.

Clamped integer - any integer from -32768 (—215) to 32767 (215—1). Num-
bers outside the range are clamped to the nearest integer inside the range,
e.g. 33000 would be clamped to 32767. Real numbers are rounded to the
nearest integer inside the range.

123

Real number - any real number whose integer component is in the range
239 (0 230_1. Numbers that are out of range cause the command to be
ignored. If the number has no fractional component the decimal point may
be omitted. Real numbers are accurate to six significant digits.

Clamped real number - any real number whose integer component is in the
range 32768 (-2'%) to 32767 (2'°-1). Numbers outside this range are
clamped to the nearest real number inside the range. If the number has no
fractional component the decimal point may be omitted.

Label - any text string.

124

5.4 Programming with GL2

Send GL2 commands to the printer using the same programming language
commands that are used for printing ordinary text. In BASIC this is the
LPRINT command. The two example programs which follow, in BASIC
and C, demonstrate how an IBM PC might send the printer GL2 commands.

5.4.1 BASIC program

100 WIDTH “LPT1:",255

110 LPRINT CHRS(27);”E"; :REM ESC E - Reset

120 LPRINT CHRS(27);7%0B"; :REM ESC %0B - Enter GL2
graphics mode

130 LPRINT “IN”; :REM Initialize GL2 graphics variables
140 LPRINT “IP0,0,6096,6096"; :REM Initialize Pl and P2
150 LPRINT “SC0,24,0,24"; :REM Set user units to 1/4"
160 LPRINT “SP1PA6,6"; :REM Select black pen & move to
(6,6)

170 LPRINT “PUEAL18,18”; :REM Draw sguare

180- LPRINT CHRS$(27):”%0A"; :REM Revert to PCL mode with
cursor in its pre-GL2 mode position
190 LPRINT CHRS(27);”E”; :REM Reset printer & eject page

5.4.2 C program

#include <stdio.h>

main)

{

FILE *prn; /* Access printer port */
prn = fopen(”PRN”, "wb”);

forintf (prn, "\33E”); /* ESC E - Reset */

forintf(prn, “\33%0B”); /* ESC%0B - Enter GL2 graphics
mode */

fprintf (prn, “IN”); /* Initialize GL2 graphics variables
* /

fprintf (prn,”IP0,0,6096,6096”); /* Initialize Pl and P2
*/ .

fprintf (prn,”8C0,24,0,24"); /* Set user units to 1/4”" */
fprintf (prn, "SP1PA6,6"1; /* Select Dblack pen & move Lo
(6,6) */

fprintf (prn, "PUEA18,18"); /* Draw square */
fprintf (prn, “\33%04"); /* Revert to PCL mode with cursor

in its pre-GLZ mode position */
fprintf (prn,”\33E /* Reset princer & eject page */

}

125

5.4.3 Automatic “Pen down”

Some drawing commands draw on the page irrespective of the current pen
state (up or down). It is advisable to immediately precede these commands
with a Pen up command (PU). This precludes the possibility of unwanted
dots on the final output.

5.4.4 Lost mode

If a command parameter value causes overflow, the printer can lose track of
the current pen position. The printer then enters “lost” mode. In “lost” mode
the printer raises the pen and ignores the following commands: AA, AR,
AT, CL, CP, EA, ER, EW, LB, PE, PM¢, PR, RA, RR, RT and WG.

The printer can still perform the following commands: AC, AD, CF, CO,
DF, DI, DR, DT, DV, ES, FT, IN, IP, IR, IW, LA, LO, LT, PA, PD, PG,
PM1, PM2, PU, PW, RF, RO, RP, SA, SB, SC, SD, SI, SL, SM, SP, SR,
SS, TD, UL and WU.

You can get out of “lost” mode by using the IN, PA, PG or RP commands
with valid parameters, or the PU or PD commands with valid absolute
parameters. The PD (Pen down) command draws a line from the last known
pen position to the first point in its parameter list. If the PA command is
used to clear “lost” mode, the pen stays in the “‘up” position until the printer
receives a PD (Pen down) command.

126

5.5 GL2 graphics commands

GL2 graphics commands are classified in five groups. Each group consists
of commands whose uses are related. The five command groups are as fol-
lows:

Configuration and status group

Vector group

Polygon group

Line and fill attributes group

Character group

5.5.1 Configuration and status group
The commands that make up the configuration and status group are as fol-
lows:

Initialize IN Rotate coordinate system | RO
Default values DF || Input window IW
Input scaling points IP Advance full page PG
Input relative scaling points IR || Replot RP
Scale SC

These commands set up an environment in which the remaining GL2 com-
mands can operate.

IN and DF set GL2 variables to default values.

IP and IR position the scaling points P1 and P2, and hence determine image
size and rotation. They can be used to effect a variety of image transposi-
tions and duplications.

SC sets the size of the user units and can thus be used to resize or distort an
image.

RO rotates the coordinate system and can thus also be used to rotate images.

IW defines a window outside of which no GL2 graphics or text can appear.
127

Initialize

IN[}]

The command initializes all GL2 graphics mode variable settings to their
default values.

The table shows the default GL2 graphics mode settings and the command
equivalents for resetting them.

It is a good idea to use IN; each time you switch the printer into GL.2 mode,
uniess you specifically want to retain some variable settings from the last
time that GL.2 mode was used.

Function Setting Equivalent instruction
Plotting mode Absolute PA;
Window Current picture frame Iw;
Anchor corner Bottom left corner of picture frame AC;
Scaling No scaling: plotter units in use SC.
Scaling points Picture frame bottom left and top right corners 1P;
Rotation 0 degrees RO;
Line type - Solid LT,
Line pattern length 4% of distance from Pl 10 P2 LT,
Line attributes Butt caps. mitered joins, miter limit=3 LA:
User-defined line type All line types set to default UL:
Pen White pen selected SP:
Pen position Lower left corner of picture frame PA0,0;
Pen state Up PU;
Pen width type Metric WU,
Pen width 0.35mm PW;
Fill type Type | - solid FT;
Raster fill Solid biack ‘ RF:
Transparency mode On TRI;
Screened vectors No screening SV:
Polygon mode Polygon buffer empty PMOPM2;
Standard font Stick font SD;
Alternate font Stick font AD:
Character set Standard font selected SS:
Character slant 0 degrees . SLO:
Character fill Solid CF;
Character direction Horizontal DIL0;
Character size transformation Off SI,
Symbol mode Oftf SM:
Scalable or bitmap fonts Scalable fonts only SBO;
Label terminator CHR$(3), non-printing. DTCHRS$(3).
Label-origin Current pen position LOI;
Text path Left to right with normal line feed. DV;
Extra space No extra space ES;
Transparent data Normal printing mode TD;

128

Default values
DF [;]

The command sets all GL2 graphics mode variable settings to their factory
default values, except for the following:

The position of P1 and P2, the GL2 coordinate system rotation, and the cur-
rent pen position, pen state (up or down), pen number, pen width and width

unit.

The printer sets the carriage return point for labelling to the current pen
position. See the Character group section on page 171 for a description of

labelling.

This command allows you to reset GL2 variables without affecting the cur-
rent plotting characteristics.

The table below shows the default GL2 graphics mode settings which DF;
resets and the command equivalents for resetting them.

Function Setting Equivalent instruction
Plotting mode Absolute PA:
Window Current picture frame TW:
Anchor corner Bottom left corner of picture frame AC:
Scaling No scaling: plotier units in use SC.

Line type Solid LT;

Line pattern length 49 of distance from Pl 1o P2 LT:

Line attributes Butt caps, mitered joins, miter limit=5 | LA:
User-defined line type All Tine types set lo default UL:

Fill type Type 1 - solid FT:
Raster fiil Solid black RF;
Transparency mode On TR
Screened vectors No screening SV.
Polygon mode Polygon buffer empty PMOPM2:
Standard font Stick font SD:
Alternate font Stick font AD:
Character set Standard font selected SS;
Character slant ()} degrees) SLO;
Character fil] Solid CF.
Character direction Horizontal DI1.0:
Character size transformation Off SI;
Syribol mode [8li} SM;
Scalable or bitmap fonts Scalable fonts only SBO:;
Label terminator CHRS(3). non-printing. DTCHRS(3},
Label origin Current pen position LOI;

Text path Left to right with normal Jine feed. DV;

Extra spuce No exira space ES:
Transparent data Normal printing mode TD:

129

Input scaling points
IP [P1x, P1y[, P2x, P2y][]
Plx: x-coordinate of Pl
Ply: y-coordinate of Pl
P2x: x-coordinate of P2
P2y: y-coordinate of P2

The command defines the positions of P1 and P2 in absolute plotter units
relative to the lower left-hand corner of the picture frame.

Plotter units are 1/1016" and coordinate values are integers.

The next SC command received by the printer assigns user coordinate val-
ues to P1 and P2. This effectively sets the size of the user units.

If you omit the parameters, the command sets the scaling points to their
default positions, the lower left- and upper right-hand corners of the PCL
picture frame in the current GL2 coordinate system orientation. See the
Rotate coordinate system command on page 136 for a description of how to
rotate the coordinate system.

If you omit the P2 parameters, P2 is repositioned so that it stays in the same
position relative to P1. Hence if you want to plot the same image several
times in different positions, simply move P1 and redraw the image.

P1 and P2 may be positioned anywhere, as long as the specified coordinates
are inside the integer range. However, only the parts of an image that lie
inside the effective window will appear on the final output.

PIx must be set to a different value from P2x, and P/y must be set to a dif-
ferent value from P2y. If P1x and P2x, or Ply and P2y, are set to equal val-
ues, the P2 coordinate is set to be 1 plotter unit greater than the
corresponding Pl coordinate.

The scaling point settings remain in effect until the printer receives another
IP command. or an IR or IN command.

130

Input relative scaling points
IR[P1x, P1y[, P2x, P2y 1]
PIx: x-coordinate of P1
Ply: y-coordinate of Pl
P2x: x-coordinate of P2
P2y: y-coordinate of P2

The command defines the positions of Pl and P2 as a percentage of the
width and height of the picture frame.

Coordinate values are clamped real numbers.

The next SC command received by the printer assigns user coordinate val-
ues to P1 and P2. This effectively sets the size of the user units.

If you omit the parameters, the command sets the scaling points to their
default positions, the lower left- and upper right-hand corners of the PCL
picture frame in the current GL2 coordinate system orientation. See the
Rotate coordinate system command on page 136 for a description of how to
rotate the coordinate system.

If you change the size of the PCL picture frame, P1 and P2 are repositioned
so that their relative distances from each corner of the picture frame remain
the same.

The plotter unit coordinates of the scaling points are stored in the printer. If
you subsequently change the orientation of the coordinate system using the
Rotate coordinate system command, P1 and P2 are repositioned so that they
have the same plotter unit coordinates in the new orientation.

If you omit the P2 parameters, P2 is repositioned so that it stays in the same
position relative to P1. Hence if you want to plot the same image several
times in different positions, simply move P1 and redraw the image.

P1 and P2 may be positioned anywhere, as long as the specified coordinates
are inside the real number range. However, only the parts of an image that
lie inside the effective window will appear on the final output.

The scaling point settings remain in effect until the printer receives another
IR command, an IP command or an IN command.

131

Scale
SC [Xmin, Xmax, Ymin, Ymax |, type [, left, bottom1]] [;] (Types
0&1)
SC [Xmin, Xfactor, Ymin, Yfactor, type] [;] (Type 2)

Xmin: x-coordinate of Pl

Xmax: x-coordinate of P2

Ymin: y-coordinate of Pl

Ymax: y-coordinate of P2

tvpe: scaling type

left: percentage of unused space to left of scaling area

bottom: percentage of unused space below scaling area

Xfactor: ratio of plotter units to user units on x-axis

Yfactor: ratio of plotter units to user units on y-axis
The command assigns user unit coordinates to Pl and P2, and makes user
units the current units.

In effect, this command sets the size of the user units, which are calculated
from the positions of P1 and P2.

Coordinates can now be specified in user units: the printer interprets coordi-
nate parameters with reference to the positions of P1 and P2.

There are three different types of scaling: anisotropic, isotropic and point
factor.

P1 and P2 are not graphic limits. You can print an image that lies wholly or
partly outside the P1-P2 rectangle. so long as it lies within the effective win-
dow.

P1 does not have to be (0,0). Both the unit-size and origin can be selected to
fit the requirements of the task at hand.

The order in which the coordinate parameters are specified for the SC com-
mand differs from the order other commands use: the two x-coordinates are
specified first, then the two y-coordinates.

type =0, 1 or 2. 0 selects anisotropic scaling, 1 selects isotropic scaling and
2 selects point factor scaling.

In anisotropic and isotropic scaling Xmin must be different from Xmax, and
Ymin must be different from Ymax.

132

Anisotropic scaling, the default, allows x-axis and y-axis units of different
sizes. As a result, the rectangle defined by Xmin, Xmax, Ymin, and Ymax
occupies the entire area defined by P1 and P2.

P2

P1

Anistropic units need not be square, so for example, the CI command to
draw a circle may be used to generate an ellipse.

The left and bottom parameters are not used in anisotropic scaling. If they
are specified, they will be ignored.

Isotropic scaling forces x-axis and y-axis units to be the same size. As a
result, the rectangle defined by Xmin, Xmax, Ymin, and Ymax (the isotropic
area) may not occupy the entire area defined by P1 and P2.

If the isotropic area does not fit exactly, it is sized so that either its height or
its width matches that of the P1/P2 rectangle, and so that it fits entirely
within the rectangle. This results in unused space either above and below, or
to the sides of the isotropic area.

P2

L— feft—) F—(100 — Jeft%)—

P1

133

Isotropic units are always square. So for example, when the CI command is
used, a circle is always drawn.

You can precisely position the isotropic area within the P1-P2 rectangle by
specifying the percentage of unused space that should lie below, or to the
left of, the isotropic area.

left determines the percentage of unused space to lie to the left of the isotro-
pic area, if the width of the isotropic area is less than the width of the P1/P2
rectangle. left is in the range O to 100.

bottom determines the percentage of unused space to lie below the isotropic
area, if the height of the isotropic area is less than the height of the P1/P2
rectangle. bottom is in the range O to 100.

Specify either both left and bottom parameters, or neither. Although only
one of them will apply, both must be supplied.

If you omit the left and bottom parameters, the isotropic area is centered
within the P1/P2 rectangle.
P2

50% 50%

P1

Point factor scaling specifies the number of plotter units in each user unit
and assigns user unit coordinates to P1.

Xfactor specifies the number of plotter units in one x-axis user unit, and
Yfactor the number of plotter units in a y-axis user unit. Xfactor and Yfactor
are both integers.

By varying the parameters supplied to successive SC commands you can
manipulate images in a number of ways, for example, you can invert images
and create mirror images.

134

To invert an image set Ymin to be greater than Ymax. To generate the mirror
image of an image, set Xmin to be greater than Xmax.

Because the SC command sets the size of user x- and y-units in terms of the
scaling points, changes to the relative positions of Pl and P2 will cause the
size of one or both of the user units to change as well.

Possible parameter errors and the action the printer takes in each case are as

follows:

Condition

Printer's response

Types 0, 1 & 2: No parameters

Ignores command, turns scaling off

Types 0 & 1: Fewer than 4 parameters

Ignores command

Types 0 & 1: 6 parameters

Ignores command

Types 0 & 1: More than 7 parameters

Executes command using first 7
parameters

Types 0 & 1: Xmin = Xmax

Ignores command

Types 0 & I: Ymin = Ymax

Ignores command

Type 2: Fewer than 5 parameters

Ignores command

Type 2: More than 5 parameters

Ignores command

Type 2: More than 7 parameters

Ignores command

Type 2: Xfactor =0 or Yfactor =0

Ignores command

The SC; command with no parameters makes plotter units the current units.

An SC command remains in effect until the printer receives another SC

command or a DF or IN command.

135

Rotate coordinate system

RO [angle][]

The command sets the orientation of the GL2 coordinate system relative to
the orientation of the picture frame.

angle, which can be 0, 90, 180, or 270, specifies the angle of rotation counter-
clockwise from the default orientation, in which the origin of the GL2 coordi-
nate system corresponds to the bottom left-hand corner of the picture frame.

Picture frame Picture frame
p2
,,,,,,,,,,,, k2 R R
| | -
Current pen Current pen
position ! | position
! * : ® '
CRREEEEEEEEE : ! !
mee b L Bl
(0,0) (0,0)

Rotating the coordinate system through 90°

The plotter unit origin, (0,0), is set to one of the four corners of the picture
frame, according to the specified rotation.

The current pen position does not change: the pen’s current coordinates are
changed to reflect the new orientation.

The positions of P1 and P2 move with the coordinate system so that they
retain the same coordinates. However, this may place either or both of them
outside the picture frame. To reposition PI and P2 at the lower left- and
upper right-hand corners of the picture frame in the new orientation, use the
IP; command.

The contents of the polygon buffer are rotated.

An input window will be rotated with the coordinate system. However, this
may place part of the window outside the picture frame. The input window
will then be clipped to the overlap of the picture frame, the logical page and
the printable area. To reset the input window to the picture frame limits, use
the IW; command.

The command with no parameter sets the rotation of the coordinate system
to O degrees.

The command remains in effect until the printer receives another RO com-
mand or an IN: command.

136

Input window

IW [X1, Y1, X2, Y21[]
X!: input window bottom left corner x-coordinate
YI: input window bottom left corner y-coordinate
X2: input window upper right corner x-coordinate
Y2: input window upper right corner y-coordinate

The command defines an input window, a rectangular area on the page, out-
side which no printed output can appear. Only GL.2 graphics output that lies
within the input window will appear on the printed page.

The input window is also known as the soft clip limits.
Coordinates are specified in current units and are integers.

If the current units are user units when the input window is defined, subse-
quent IP or IR commands will move the window on the page, so that the
user coordinate values of the window’s corners remain the same. However, a
subsequent SC command fixes the input window on the page: its position is
then unaffected by any further IP or IR commands.

Picture frame Picture frame

Input window

An input window can be used to
mask out portions of an image

The corners of the window can be set to lie outside the picture frame. However,
only the parts of an image which fall within the eftective window will be printed.

The command with no parameters sets the input window to the picture
frame limits.

The command remains in effect until the printer receives another IW com-
mand or a DF; or IN; command.

137

Advance full page
PG [;]

The command clears “lost” mode but is otherwise ignored by the printer.

Use the PCL Form feed control code to eject a page. This is described in
Chapter 4 on page 68.

A Form feed does not affect the GL2 pen position.

Replot
RP [;]
The command clears “lost” mode but is otherwise ignored by the printer.

Use the PCL Select number of copies command to print multiple copies of a
graphics plot. This is described in Chapter 4 on page 52.

5.5.2 Vector group

The commands that make up the vector group are as follows:

Pen up PU || Draw circle CI

Pen down PD | Draw absolute arc AA
Plot absolute PA Draw absolute three point arc AT
Plot relative PR || Draw relative arc AR
Polyline encoded PE Draw relative three point arc RT

The commands in this group control the pen state (up or down), position the
pen and draw lines. PU (Pen up) and PD (Pen down) set the pen state, deter-
mining whether plotting commands such as PA (Plot absolute) and PR (Plot
relative) plot lines or simply move the pen without drawing. PE (Polyline
encoded) combines a sequence of vector group commands into a single
command. CI (Draw circle) and the arc drawing commands add the facility
to draw circles, ellipses and curves.

138

Pen up

PULX, Y[..]11[]
X: x-coordinate of destination point
Y: y-coordinate of destination point

The command raises the pen and moves in turn to each of the destination
points specified.

If no parameters are supplied, the command raises the pen without moving it.
Coordinates are in current units, are real numbers, and can be either relative
or absolute. If a PA (Plot absolute) command was used most recently, coor-
dinates are absolute. If PR (Plot relative) was used most recently, coordi-

nates are relative. If neither PA or PR has been used, coordinates are
absolute.

There is no limit on the number of coordinate pairs you can specify.
If an odd number of coordinates is specified, the final coordinate is ignored.

In symbol mode the selected symbol is drawn at each point in the list. For a
description of symbol mode refer to the SM command on page 166.

In polygon mode the destination points are stored in the polygon buffer and
used when an Edge polygon or Fill polygon command is executed. For a
description of polygon mode refer to the PM command on page 149.

Pen down
PD[X, Y[..11[]
X: x-coordinate of destination point

Y: y-coordinate of destination point

The command lowers the pen and draws a line from the current pen position
to the first destination point, and then successively from each destination
point to the next.

If no parameters are supplied, the command lowers the pen without moving it.

In all other respects the command is the same as the PU (pen up) command.

139

Plot absolute

PALX, Y[..11[]
X: x-coordinate of destination point
Y: y-coordinate of destination point

The command moves the pen to each of the destination points in turn, and
sets the plotting mode to absolute plotting.

If no pafameters are supplied, the command simply makes absolute plotting
the current plotting mode.

The parameters of commands which follow are treated as absolute coordi-
nates.

Coordinates are in current units and are real numbers.

If the pen is “down”, a line is drawn from the current pen position to the first
specified position, and then between each successive pair of points in the
parameter list.

If an odd number of coordinates is specified, the final coordinate is ignored.

In symbol mode the selected symbol is drawn at each point in the list. For a
description of symbol mode refer to the SM command on page 166.

In polygon mode the destination points are stored in the polygon buffer and
used when an Edge polygon or Fill polygon command is executed. For a
description of polygon mode refer to the PM command on page 149.

140

Plot relative

PR[X, Y[..]]1[]
X: x-coordinate of destination point
Y: y~coordinate of destination point

The command moves the pen to each of the destination points in turn, and
sets the plotting mode to relative plotting. The coordinates of the first point
in the list are interpreted relative to the current pen position; the coordinates
of each subsequent point are interpreted relative to the preceding point.

If no parameters are supplied, the command simply makes relative plotting
the current plotting mode.

The parameters of commands which follow are treated as relative coordi-
nates.

Coordinates are in current units and are real numbers.

If the pen is “down”, a line is drawn from the current pen position to the first
specified position, and then between each successive pair of points in the
parameter list.

If an odd number of coordinates is specified, the final coordinate is ignored.

If the command moves the pen to a position whose absolute plotter unit
coordinates are outside integer range, all following commands are ignored
until a PA or PE command clears “lost” mode.

In symbol mode the selected symboi is drawn at each point in the list. For a
description of symbol mode refer to the SM command on page 166.

In polygon mode the destination points are stored in the polygon buffer and
used when an Edge polygon or Fill polygon command is executed. For a
description of polygon mode refer to the PM command on page 149.

141

Polyline encoded
PE[[flag][valuel| XiYi...[flag] [value]| Xi Yi]];
flag: a command, number type, plotting mode or data mode
value: parameter data for preceding flag
Xi: x-coordinate of destination point
Yi: y-coordinate of destination point
The command incorporates a sequence of PA, PR, PU, PD and SP com-

mands into a coded form, resulting in smaller graphics files and reducing
data transmission times.

Flags within the parameter list determine the way in which data is inter-
preted.

The command draws lines to all coordinate points in the list except those
preceded by a “<” (pen up) flag.

All coordinates are relative except those preceded by the absolute mode flag (=).
The command must be explicitly terminated by a semi-colon.

Flags are as follows:

Select pen The number that follows selects the pen. A PE
command without this flag uses the current pen.

< Pen up The pen is raised, moved to the point specified by
the coordinates that follow, and lowered. Lines
are drawn to all points not preceded by this flag.

> Fractional data | The number that follows specifies the number of
fractional binary bits in the data.

= Absolute plot- | The coordinate pair following the flag are inter-
ting preted as absolute coordinates. Any coordinates
not preceded by this flag are relative.

7 7-bit mode All coordinate values following the flag are inter-
preted as 7-bit (base 32) values.

Send flags to the printer as ASCII character codes. The MSB of the code is
ignored, so ‘<’, the fractional data flag, can be either 62 or 190.

The ‘:” select pen flag has no effect in polygon mode.

142

Values and coordinates are encoded in base 64 or base 32 using ASCII char-
acter codes. Codes 0 — 62, 127 — 190 and 255 are not used. (Number encod-
ing schemes are described below).

Valid ranges for values and coordinates are as follows:

Pen number 0 (white) or 1 (black)

Number of fractional binary bits 0 to 26 (default 0)

Coordinates 230492304 plotter units

If the command moves the pen to a position whose absolute plotter unit coor-
dinates are outside integer range, all following coordinates are discarded up
to the next absolute flag, =", that is followed by in-range coordinates.

Encode coordinate values as either base 64 (the default) or base 32 numbers, and
send them to the printer using the corresponding ASCII character codes. Use
base 32 on systems requiring a parity bit and base 64 on systems that do not.

To encode an integer, multiply its absolute value by 2, and, if the original
value was negative, add 1, e.g. represent —50 as 101 and +50 as 100. Convert
this number to base 64 or base 32, and encode each base 64 or 32 digit as an
ASCII character code.

To encode a real number, multiply the number of decimal places by 3.33 and
round this result up to the next integer (e.g. round 23.31 up to 24). This is
the number of binary bits needed to represent the fractional part of the real
number - the value that follows the ‘>’ flag. Call this number a. Multiply the
original real number by 2a, round it to the nearest integer and encode it as an
integer as described above.

Numbers must be transmitted to the printer least significant digit first, and
the last (most significant) digit of a number must be specified using a differ-
ent ASCII range from that used for the preceding digits, as follows.

Base | Non-terminating codes Terminating codes
32 63 - 94 95 - 126
64 63 -126 191 —254

143

For example, to encode a two-digit base 64 number with least significant
digit 2, and most significant digit 7, encode 2 as 65 (63+2) and 7 as 198
(191+7).

Commas are not permiftted within a PE command.

In symbol mode the selected symbol is drawn at each specified point. For a
description of symbol mode refer to the SM command on page 166.

In polygon mode the specified points are stored in the polygon buffer and
used when an Edge polygon or Fill polygon command is executed. For a
description of polygon mode refer to the PM command on page 149.

After the command has been executed the previous plotting mode (absolute
or relative) is restored and the pen is set in the “down” position, unless the
PE command’s final pen movement was with the pen “up”.

The PE; command with no parameters updates the carriage return point. For
an explanation of the carriage return point refer to the LQ Label origin com-
mand on page 179.

100 WIDTH "LPT1:",255;

110 LPRINT CHRS$(27);"E";

120 LPRINT CHRS$S(27);"%0B";

130 LPRINT "INSCO0,500,0,500,1,50,0";

140 LPRINT "PE:1<=150,150,100,0,0,50,-70,-25,-30,-25";
150 LPRINT CHRS$(27); "%0A";

160 LPRINT CHRS(27);"E";

170 END

144

Draw circle
Cl radius [, chord][;]

radius: circle radius in current units
chord: chord angle in degrees

The command draws a circle of radius radius, whose center is the current
cursor position.

The circle is comprised of equal chords which subtend an angle of chord
degrees.

radius is a real number, and chord a clamped real number with a valid range
of 0.5 to 180. The default value is 5, giving a default 72 chords to the circle.
The smaller the angle chord, the smoother the circle.

The command plots irrespective of the current pen state.

It is advisable to precede the command with a PU command, to avoid an
unwanted dot at the center of the circle.

Anisotropic or point factor scaling may cause the circle to appear as an
ellipse.

When the command has executed, the previous pen position (the center of
the circle) and pen state (up or down) are restored.

100 WIDTH "LPT1:",255;

110 LPRINT CHRS (27);"E";

120 LPRINT CHRS$(27); "%0B";

130 LPRINT "INSCO0,500,0,500,1,50,0";
140 LPRINT "PU250,250CI100,CI50,CI25";
150 LPRINT CHRS(27); "%0A";

160 LPRINT CHRS$ (27);"E";

170 END

145

Draw absolute arc

AA X, Y, arc|, chord][;]
X: arc center x-coordinate
Y: arc center y-coordinate
arc: arc angle in degrees
chord: chord angle in degrees

The command draws an arc starting from the current cursor position. The
arc’s center is the specified point.

Coordinates are in current units and are absolute.

The radius of the arc is the distance between the current position and the
point (X.Y).

The arc subtends an angle of arc degrees and is made up of equal chords,
each subtending an angle of chord degrees. The smaller the value of chord,
the smoother the arc.

If arc is positive, the arc is drawn counterclockwise; if it is negative, the arc
1s drawn clockwise.

An arc is only plotted if the pen is down.

After the command has finished, the pen position is at the opposite end of
the arc from the starting point (even if the pen was up).

X and Y are real numbers.

arc 1s a clamped real number and chord a clamped real number with a valid
range of 0.5 to 180. The default value is 5.

Anisotropic or point factor scaling may make the arc elliptical rather than
circular.

It is advisable not to use an adaptive line type with this command. For an expla-
nation of line types refer to the LT Line type command on page 162.

146

Draw absolute three point arc

AT X1, Y1, X2, Y2[, chord][}]
X1: x-coordinate of intermediate point
Y1: y-coordinate of intermediate point
X2: x-coordinate of end point
Y2: y-coordinate of end point

chord: chord angle

The command draws an arc that starts at the current pen position, passes
through the intermediate point, and finishes at the end point.

Coordinates are in current units and are absolute.
An arc is only plotted if the pen is down.

After the command has finished, the pen position is at the opposite end of
the arc from the starting point (even if the pen was up).

Whether the arc is drawn clockwise or counterclockwise depends on the
position of the intermediate point relative to the start and end points.

X1, YI, X2 and Y2 are real numbers.

chord is a clamped real number with a valid range of 0.5 to 180. The default
value is 5.

Anisotropic or point factor scaling may make the arc elliptical rather than
circular.

If the intermediate point does not lie between the start and end points, an arc 1s
not drawn. Instead two straight lines are plotted: one from the current pen
position through the intermediate position to the edge of the effective window,
and one from the opposite edge of the effective window to the end point.

147

Draw relative arc

AR X, Y, arc|, chord][;]
X: arc center x-coordinate
Y: arc center y-coordinate
arc: arc angle in degrees
chord: chord angle in degrees

The command draws an arc starting from the current cursor position. The
arc’s center is the specified point.

Coordinates are in current units and are relative.

In all other respects the command functions in the same way as the AA
Draw absolute arc command.

Draw relative three point arc

RT X1, Y1, X2, Y2[, chord] [;]
X1: x-coordinate of intermediate point
YI: y-coordinate of intermediate point
X2: x-coordinate of end point
Y2: y-coordinate of end point
chord: chord angle

The command draws an arc that starts at the current pen position, passes
through the intermediate point, and finishes at the end point.

Coordinates are in current units and are absolute: the intermediate and end point
coordinates are specified relative to the start point (the current cursor position).

In all other respects the command functions in the same way as the AT
Draw absolute three point arc command.

148

5.5.3 Polygon group

The commands that make up the polygon group are as follows:

Polygon mode PM || Fill absolute rectangle RA
Edge absoluterectangle | EA || Fill relative rectangle RR
Edge relative rectangle | ER || Fill polygon FP
Edge polygon EP || Fill wedge WG
Edge wedge EW

Polygon group commands store, plot, and fill polygons. The polygon buffer,
a temporary printer storage area, holds coordinate pairs that define one or
more polygons. The buffer has enough space for at least 512 points, and
may be able to hold many more if printer memory is available. This depends
in part on the number of tfonts and macros downloaded in PCL mode. Multi-
ple polygons in the buffer are referred to as sub-polygons. A polygon or
sub-polygon stays in the buffer until overwritten by another polygon, or
until the printer receives a DF; or IN; command. Some commands automat-
ically use the contents of the polygon buffer; others only use the bufter in
polygon mode. The PM command is used to enter polygon mode.

Polygon Mode
PM [mode] [;]

mode: command mode
The command enters or exits polygon mode, or closes a sub-polygon.

In polygon mode vector group commands, such as PA and PR, can be used
to define the outline of a polygon.

A polygon in the buffer will not be plotted until polygon mode has been
exited. '

Multiple polygons in the buffer are known as sub-polygons.
The value of mode determines the action of the command.

mode = 0 empties the polygon buffer, enters polygon mode and stores the
current pen position as the first vertex of the new polygon. Make sure you
position the pen at the first point in the polygon before using a PMO0; com-
mand.

149

mode = 1 closes the current polygon or sub-polygon without exiting polygon
mode. To close a polygon the command adds a point whose coordinates are
the same as those of the starting point, so that the polygon is a closed shape.

The vector group commands that follow a PM1; define a single sub-poly-
gon. A subsequent PM1,; cioses the polygon and marks the start of a new
sub-polygon definition.

mode =.2 closes the current polygon or sub-polygon and exits polygon
mode.

Unlike a PM0; command, a PM1; command does not store the current pen
position as the first point of a new sub-polygon.

100 WIDTH "LPT1:",255;

110 LPRINT CHRS$(27);"E";

120 LPRINT CHRS$(27);"%0B";

130 LPRINT "INSCO0,500,0,500,1,50,0";
140 LPRINT "PU100,100";

150 LPRINT "PMOPA100,400,400,400,400,100,100,100pPM1";
160 LPRINT "PU200,200CI30PML,PU200,300CI30PML";

170 LPRINT "PU300,200CI30PM1,PU300,300CI30";

180 LPRINT "PMZ;FP;EP";

190 LPRINT CHRS(27); "%O0A";
200 LPRINT CHRS$(27);"E";
210 END

The command with no parameters is equivalent to a PM0; command.

After polygon mode has been exited, the EP or FP command can be used to
edge or fill the polygon or polygons in the buffer.

When a polygon is edged or filled, the pen is automatically raised and
moved to the first point of the polygon in the “up” state.

The EP command only draws between points defined with the pen “down”.

The FP command fills a polygon irrespective of the pen state at the time the
polygon was defined.

Only vector group commands, IN; and DF; have any effect in polygon
mode. IN; and DF; clear the buffer and exit polygon mode.

If a Reset is performed while the printer is in polygon mode, the printer exits
polygon mode, empties the polygon buffer, exits GL2 mode and ejects the
current page.

150

Edge absolute rectangle

EA X, Y[]
X: x-coordinate of rectangle opposite corner
Y: y-coordinate of rectangle opposite corner

The command draws a rectangle with the current cursor position and (X,Y)
in opposite corners.

Coordinates are in current units and are absolute. Coordinate values are real
numbers.

The rectangle is drawn irrespective of the pen state, using the current pen,
line width and line attributes.

The command first empties the polygon buffer and then makes use of it to
define the rectangle, however, you do not have to enter polygon mode to use
the command. After the command has executed the buffer contains the rect-
angle vertices.

The current pen position and pen state do not change.

Edge relative rectangle

ER X, Y[
X: x-coordinate of rectangle opposite corner
Y. y-coordinate of rectangle opposite corner

The command draws a rectangle with the current cursor position and (X.Y)
in opposite corners.

Coordinates are in current units and are relative. Hence the position of (X,Y)
is specified relative to the current cursor position. Coordinate values are real
numbers.

In all other respects the command functions in the same way as the EA Edge
absolute rectangle command.

151

Edge polygon
EP [;]

The command plots the outline of the polygon or polygons in the buffer.
The command only draws between points defined while the pen was “down”.

Polygons are plotted irrespective ot the current pen state, using the current
pen, line width and line attributes.

All polygons in the buffer are plotted, including those implicitly defined by
any previous EA, ER, RA, RR, EW or WG commands.

The data in the polygon buffer is not altered by the command.
The current pen position and pen state do not change.

Edge wedge

EW radius, start, arc [, chord] [;]
radius: radius
start: start point angle (degrees)
arc: arc angle (degrees)
chord: chord angle (degrees)

The command draws a wedge of radius radius whose center is the current
cursor position.

The radius is in current units; radius 1S a real number.

The command first empties the polygon buffer and then makes use of it to
define the wedge. however, you do not have to enter polygon mode to use
the command. After the command has executed the buffer contains the
wedge’s vertices.

The wedge is plotted irrespective of the current pen state, using the current
pen, line width and line attributes. '

The current pen position and pen state do not change.

The starting point from which the arc of the wedge is plotted can be deter-
mined in terms of a reference radius that extends horizontally from the cur-
rent pen position. Any point on the reference radius has the same
y-coordinate value as the current pen position.

152

If radius is positive, the reference radius extends in the positive x-direction.
If radius is negative, the reference radius extends in the negative x-direction.

If start is positive, the arc is drawn from a point start degrees counterclock-
wise from the reference radius. If start is negative, the arc is drawn from a
point start degrees clockwise from the reference radius.

Negative arc _» «_ Positive arc
Positive arc . Negative arc
> «
Negative — ¢ i Positive
radius radius
» bl
Negative arc™, Positive arc
‘/‘~ .
Positive arc * & Negative arc

The arc is comprised of chords that subtend an angle of chord degrees. The
smaller the value of chord, the smoother the arc.

start is a clamped real number.
If start is greater than 360, a start angle of start modulo 360 degrees is used.

arc should be in the range —-360 to 360. If arc is greater than 360, a circle is
drawn.

If arc is positive the arc is drawn counterclockwise. If arc is negative the arc
is drawn clockwise.

chord should be in the range 0.5 to 180. The default value is 5.

Anisotropic or point factor scaling may cause the wedge to appear distorted.

153

Fill absolute rectangle

RA X, Y[;]
X: x-coordinate of rectangle opposite corner
Y: y-coordinate of rectangle opposite corner

The command draws and fills a rectangle with the current cursor position
and (X,Y) in opposite corners.

Coordinates are in current units and are absolute. Coordinate values are real
numbers.

The rectangle is drawn irrespective of the pen state, using the current pen,
fill type, line width and line attributes.

The command first empties the polygon buffer and then makes use of it to
define the rectangle, however, you do not have to enter polygon mode to use
the command. After the command has executed the buffer contains the rect-
angle vertices.

The current pen position and pen state do not change.

Fill relative rectangle

RR X, Y[;]
X: x-coordinate of rectangle opposite corner
Y: y-coordinate of rectangle opposite corner

The command draws and fills a rectangle with the current cursor position
and (X,Y) in opposite corners.

Coordinates are in current units and are relative. Hence the position of (X,Y)
is specified relative to the current cursor position. Coordinate values are real
numbers.

In all other respects the command functions in the same way as the RA Fill
absolute rectangle command.

154

Fill polygon
FP []]
The command plots and fills the polygon or polygons in the butfer.

The command plots and fills irrespective of the pen state at the time the
polygon was defined.

Polygons are plotted irrespective of the current pen state, using the current
pen, fill type, line width and line attributes.

All polygons in the buffer are plotted and filled, including those implicitly
defined by any previous EA, ER, RA, RR, EW or WG commands.

Areas formed by overlapping sub-polygons are alternately filled and left
blank. The command fills a particular area enclosed by overlapping sub-
polygons if an imaginary line drawn into the area from outside all the sub-
polygons would intersect the sub-polygons’ edges an odd number of times.

The data in the polygon buffer is not altered by the command.

The current pen position and pen state do not change.

155

Fill wedge

WG radius, start, arc [, chord] [;]
radius: radius
start: start point angle (degrees)
arc: arc angle (degrees)
chord: chord angle (degrees)

The command draws and fills a wedge of radius radius whose center is the
current cursor position.

The command first empties the polygon buffer and then makes ‘use of it to
define the wedge, however, you do not have to enter polygon mode to use
the command. After the command has executed the buffer contains the
wedge’s vertices.

The wedge is plotted and filled irrespective of the current pen state, using
the current pen, fill type, line width and line attributes.

In all other respects the command functions in the same way as the EG
Edge wedge command.

156

5.5.4 Line and fill attributes group

The commands that make up the line and fill attributes group are as follows:

Anchor corner AC Symbol mode SM
Fill type FT Select pen SP
Line attributes LA || Screened vectors SV
Line type LT Transparency mode TR
Pen width PW || User-defined line type UL
Raster fill definition RF Select pen width unit WU

The commands in this group establish the line and fill types that are used by
vector and polygon group commands.

Anchor corner

AC[X Y][]
X : x-coordinate of fill pattern anchor corner
Y : y-coordinate of fill pattern anchor corner

The command establishes the starting point of the currently selected fill pattern.
Coordinates are in current units and are real numbers.

The command can be used to align a fill pattern with the shape which is to
be filled, or to fill adjacent shapes with a continuous pattern.

The command with no parameters sets the anchor position to the lower left-
hand corner of the picture frame in the current coordinate system rotation.

(A) (B)
Fill pattern start point Fill pattern start point is aligned
is aligned to lower to lower left-hand corner picture
left-hand corner of frame, and so does not align to
filled shape corner of shape

157

Fill type

FT[fill[, op1], op2]]] [}]
Sl fill type (1, 2, 3,4, 10, 11 or 21)
opl, op2 : options

The command selects a shading pattern.
Jull = 1 or 2 selects solid black. op/ and op2 are disregarded.

Sfill = 3 selects parallel hatching, fill = 4 selects cross-hatching. opl sets the
distance in current x-axis units between the lines of the pattern. op/ = 0
selects a spacing of 1% of the distance between P1 and P2. op2 selects the
angle in degrees between the hatching lines and the x-axis. The hatching
lines are drawn using the current line type, pen width and line attributes.
Subsequent changes in the position of Pl and P2 affect this spacing if user
units were current at the time that the hatching fill was selected, but not if
plotter units were in force. The lines in a cross-hatch pattern are drawn at the
selected angle to the x-axis and at 90 degrees to the selected angle.

Sfill = 10 selects a gray scale. op/ selects the tone (0 — 100%); 0% selects the
lightest tone, and 100% the darkest. There are eight levels of gray available.
op2 is disregarded.

(0-2%) (3-10%) (11-20%) (21-35%)

(36-55%) (56-80%) (81-99%) (100%)

158

fill = 11 selects a raster fill previously defined with the RF command. op!
identifies the fill by index number (1 — 8). op2 is disregarded. If no raster fill

has been defined for the selected index number, a solid black fill is used
instead.

fill = 21 selects a PCL cross-hatch pattern. op/ selects one of six predefined
PCL cross-hatch patterns (1 - 6). op2 is disregarded.

_— i

(#4) (#5) (#6)

If opl or op2 are omitted, the most recently supplied values for the selected

fill type are used. If no values have been set, the default values for the fill
type are used.

The command with no parameters defaults all fill type parameters and sets
the fill type to solid fill.

159

Line attributes

LA [attribute , value |, attribute , value [, attribute , value 11| [;]
attribute: line attribute
value: attribute value

The command specifies the shape of line joins and line ends by setting the
three line attributes: line end type, line join type and miter limit.

attribute = 1 specifies line end type, attribute = 2 line join type, and artribute
= 3 miter limit.

The four line end types and corresponding value valtues are as follows:

Value Line end

1
1 Butt]
2 Square)
3 Triangular D
* Round 9D

Line join types and corresponding value values are as shown below:

Value Line join
1 Mitered
2 Mitered/beveled ; s
3 Triangular Mitered Triangular
4 Round :
5 Beveled
6 No join
Round Beveled

160

Miter length is the dimension shown below:

Line width Miter length

The miter limit is the maximum ratio of miter length to line width and is
expressed as a number. e.g. if the miter length can be up to 8 times the line
width, the miter limit is 8.

If mitered line join type is selected and the miter limit is exceeded, the join
is beveled instead, the miter limit determining the cut off point.

Line width Miter limit

If mitered/beveled line join type is selected and the miter limit is exceeded, a
beveled line join is also used. In this case, however, the cut off point is deter-
mined by the lines’ lengths and relative positions.

Lines 0.35mm wide or less alwéys have butt line ends and no line join.

Labels are always drawn with rounded line ends and line joins, regardless of
the current line attributes.

The command with no parameters sets line ends to butt, line joins to mitered
and the miter limit to 5.

The line attributes settings remain in effect until the printer receives another
LA command, or a DF; or IN; command.

161

Line type

LT [type [, length [, mode]]] [;]
type: line type
length: pattern length
mode: pattern length mode

The command selects the line pattern which vector and polygon group com-
mands will use.

type selects the line type. fype is from -8 to 8 or is 99.
All line types are drawn using the current line attribute settings.
You can define custom line types with the UL command.

type =1 to § selects a fixed pattern length line type. Any unused part of a pat-
tern is carried over and used at the start of the next line.

= NWhrhOOON®
I
|

type=—1 to —8 selects an adaptive pattern length line type. When a line is
drawn the pattern is scaled to fit the line exactly.

162

type = 0 plots a single dot at each vertex of a rectangle plotted with an AA,
AR, AT or RT command, each point in the parameter list of a PA, PD or PR
command, and at the center of a circle drawn with a CI command.

length is specified either as a percentage of the distance between P1 and P2,
or in millimeters, depending on the value of mode. If length is omitted, the
most recently specified pattern length is used. If no value has been specified
previously, the default value is used.

If length is zero or negative, the command is ignored.

mode = 0 specifies that length is specified as a percentage of the distance
between Pl and P2. mode =1 specifies that length is defined in millimeters.
If mode is omitted, the most recently specified mode value is used. If no
value has been specified previously, the default value is used.

LT99; restores the most recent previous line type. For fixed line types the
pattern residue is also restored. LT99; only works if the following three con-
ditions are true: 1) the current line type is solid, 2) since the current line type
was selected the pen position has not changed and, 3) since the current line
type was selected none of the following commands have been used.

Line and fill attributes group Configuration and status group

AC, LA, LT (except LT; and DF, IN, IP, IR, IW, RO, SC
LT99;), PW, RF, SP, TR, UL, WU

LT; sets the line type to be solid. The previous line type, pattern length and
line residue are saved.

It is advisable to use a fixed pattern line type to plot circles, arcs, wedges
and polygons.

The line type settings remain in effect until the printer receives another LT
command, or a DF; or IN; command.

163

Pen width

PW [width [, pen]][;]
width: pen width
pen: pen number

The command sets the width of the specified pen.

The setting determines the width of subsequent lines drawn with the
selected pen.

Pen width is either specified in millimeters, or as a percentage of the dis-
tance between P1 and P2; the current pen width unit selection determines
which method is used. If no pen width unit has been specified, the width is
set in millimeters.

If width = 0, a width of 1/300" is selected.

Widths specified in millimeters are scaled by the ratio of the PCL picture
frame size to the GL2 plot size. If the ratio is different for the two axes, the
thinner pen width (smaller ratio) is used. If this is less than 1/300", then a
width of 1/300" is used.

If pen is not specified, both pens are set to the specified width. If pen is not 0
or 1, the command is disregarded.

The command with no parameters set both pens to a width of either 0.35mm
or 0.1% of the P1-P2 distance, according to the current pen width unit.

The pen width setting does not affect the width of label characters.
The DF:; command does not reset the pen width.

The pen width setting remains in effect until the printer receives another PW
command or an IN; command.

Raster fill definition
RF [index [, width, height, pixel [,...]1] [;]
index: pattern index
width: fill width
height: fill height
pixel: pixel setting

The command defines a raster fill pattern. Up to & fill patterns may be
defined.

164

The FT command can be used to select a pattern.

index is the index number of the pattern which is used to reference it when it
is selected. index can be from 1 to 8. width is the width of the pattern in pix-
els and height is the height. width and height can both be from 1 to 255.

pixel represents a single pixel in the fill pattern. O stands for a white pixel,
and any other value for a black pixel. There can be as many pixel parameters
as there are pixels in the pattern i.e. width x height. Pixels are set from left to
right and from top to bottom. If there are fewer than (width X heighr) pixel
parameters, the trailing pixels are set to white.

If width, height and pixel are omitted, the pattern is defined as a solid black
fill.

The command with no parameters sets all 8 raster fill patterns to solid black
fill.

100 WIDTH "LPT1:",255;

110 LPRINT CHRS$({(27);"E";

120 LPRINT CHRS${27);"%0B";

130 LPRINT "INSP1SCO0,500,0,500,1,50,0";
140 LPRINT "RF1,4,4,"

150 LPRINT "1,0,1,0"

160 LPRINT "0,1,0,1"

170 LPRINT "1,0,1,0"

180 LPRINT "0,1,0,1"

190 LPRINT "FT11,1PU100,100RAL05,103";
200 LPRINT CHRS$(27); "%0A";

210 LPRINT CHRS(27);"E";

220 END

165

Symbol mode
SM [char]|;]
char: ASCII character code

The command specifies a symbol for use with vector group commands, and
initiates symbol mode.

In symbol mode the specified symbol is drawn at each point in the parameter
list of any PA, PR, PD, PU or PE command, regardless of the pen state. If
the pen is down, lines are plotted as well. The symbol is centered on the
specified point.

char can be from any of the following character code ranges: 33 — 58, 60 —
126, 161 or 254. The semi-colon, ‘;’, character code 59, cannot be used, as it
1s the GL2 command terminator.

The symbol appears in the current font. If a new symbol set is selected, the
symbol may change.

The symbol’s appearance is also determined by the current character size,
slant and direction settings. See the Character group section on page 171.

The command with no parameters exits symbol mode. Subsequent PA, PR,
PD, PU and PE commands do not cause the symbol to be plotted.

The command does not alter the pen position or pen state.

An SM command remains in effect until the printer receives another SM
command, a DF; or an IN; command.

166

Select pen
SP [pen][]

pen: pen number
The command selects a pen color for drawing and filling.

pen = 0 selects the white pen. Output from the white pen is only visible on a
non-white background and when transparency mode has been turned off
with the TRO; command.

pen = 1 selects the black pen. Plotting commands produce output as normal.
Any other integer values of pen also select the black pen.

A change to the pen width does not change the current pen number selection.
The command with no parameter selects the white pen.

Screened vectors

SV [screen|, op1 [, op21111[;]
screen: screen type (0, 1, 2 or 21)
opl and op2: screen type options

The command selects the type of screening (shading) for use with lines, hatch-
ing patterns, arcs, circles and the edges of polygons, rectangles and wedges.

screen = 0 turns screening off.

screen = 1 selects a gray scale. opl specifies the percentage of shading
required (0 — 100%): op2 is disregarded. There are 8 gray scales available.
See the description of the FT (Fill type) command on page 158.

screen = 2 selects a raster fill defined by the RF command. op! specifies its
index number. If op2 = 0, the fill uses the color of pen number 1. If op2 =1,
the fill is in the current pen’s color.

screen = 21 selects a PCL cross-hatch pattern. op/ selects the pattern (1 — 6).
See the description of the FT (Fill type) command on page 158 for a dia-
gram showing the patterns available.

If opl or op2 are omitted, the most recently set values for the selected screen
type are used. If no values have been set, the values are defaulted.

The command with no parameters turns screening off.

167

Transparency mode
TR [setting][;]

setting: transparency mode

The command turns transparency mode on or off, determining how source
and destination images interact.

serting = 1 turns transparency mode on. The destination image may be seen
through the white areas of the source image.

setting = 0 turns transparency mode off. The destination image cannot be
seen through the white areas of the source image.

Refer to the description of the PCL print model on page 101 of Chapter 4 for
a discussion of source transparency.

The command with no parameter turns transparency mode on.
A Reset or an IN; or DF; command turns transparency mode on.

User-defined line type
UL [index][, gap[....]1 [}]
index: pattern index
gap: pattern gap
The command redefines line types. Up to 8 line patterns may be defined.
The LT command can be used to select the defined line types.

index (1 — 8) specifies the index number of the line type to be defined.

gap sets the length of alternate pen down and pen up segments on the line. A
line type can have up to 20 segments; the first must always be a pen down
segment.

100 WIDTH "LPT1:",255;

110 LPRINT CHRS(27);"E";

120 LPRINT CHRS(27);"%0B";

130 LPRINT "INSPLl";

140 LPRINT "IPO,0,4064,4064";

150 LPRINT "SCO,100,0,100";

160 LPRINT "PU50,50";

170 LPRINT "UL4,40,30,20,10";

180 LPRINT "PWO.5LT4,12.5,0CI30";

168

190 LPRINT CHRS(27); "%0A";
200 LPRINT CHRS(27);:"E";
210 END

gap is a positive clamped integer. The LT command automatically converts
the gaps to percentages.

index is an absolute value. UL—6 and UL6 are equivalent. If a fixed line type
is redefined, the corresponding adaptive line type is automatically redefined
to match.

The sum of the gap parameters must be greater than 0. If an index number is
specified but no gap parameters, the line type is set to the default for the
index number.

The command with no parameters defaults all line types.

169

Select pen width unit
WU [unit] [;]

unit: unit type

The command specifies a pen width unit for use with the PW command.
The unit selection applies to both pens.

The WU command always sets both pens’ widths to default values.

unit = 0 selects millimeters as the pen width unit and sets all pen widths to
0.35mm.

unit = 1 specifies that pen width is to be designated as a percentage of the
distance between P1 and P2. Both pens’ widths are set to 0.1% of the cur-
rent distance.

The command with no parameter sets the unit type to millimeters and both
pens’ widths to 0.35mm.

The unit type setting is not altered by a DF; command.

The width unit setting remains in effect until the printer receives another
WU command or an IN; command.

170

5.5.5 Character group

The commands that comprise the character group are as follows:

Define standard font SD Relative direction DR
Define alternate font AD || Define variable text path DV
Select standard font SS Character plot cp
Select alternate font SA || Character fill mode CF
Select primary font FI Set absolute character size SI

Select secondary~ font FN || Set relative character size SR
Define label LB Set character slant SL
Define label terminator DT || Scalable or bitmap fonts SB
Label origin . LO || Extra space ES
Absolute direction DI Transparent data D

The commands are used to print and manipulate text. Any font available in
PCL mode can also be used in GL2 mode. In addition, the size, direction, fill
pattern and slant of characters can be altered. As in PCL mode, two font def-
initions are always maintained, the standard font and the alternate font. You
can switch between the two with a single command.

171

Define standard font

SD [attribute, value] [...] [;]
attribute: font attribute
value: attribute value

The command defines the standard font in terms of the seven font attributes.

Attributes are as follows: symbol set, spacing, pitch, height, posture, stroke
weight and typeface.

attribute (1 —7) identifies which attribute is to be set, as shown:

attribute Attribute

1 symbol set

2 spacing type
3 . pitch

4 height

S posture

6 stroke weight
7 typeface

Any number of attributes can be set: the current standard font settings are
retained for any attributes not specified in the command.

value selects the setting for the selected attribute.

172

Auvailable options for each attribute are as follows:

Symbol set

ISO 60: Norwegian 4 HP Spanish 51
Roman Extension 5 ISO 57: Chinese 75
ISO 25: French 6 ISO 17: Spanish 33
HP German 7 ISO 2: IRV 85
ISO 15: Italian 9 ISO 10: Swedish 115
JIS ASCII 11 ISO 16: Portuguese 147
ECMA-94 Latin 1 14 ISO 84: Portuguese 179
ISO 11: Swedish 19 ISO 85: Spanish 211
US-ASCII 21 Roman-8 277
ISO 61: Norwegian 36 IBM-PC(US) 341
1SO 4: UK 37 IBM-PC(Denmark/Norway) 373
ISO 69: French 38 PC-850 405
ISO 21: German 39

Spacing type

Fixed spacing (default)

Proportional spacing

Pitch

Pitch setting 0 — 32767

Height

Height setting | 0 — 32767

173

Posture

Upright (default) 0
Italic 1
Alternate italic 2

Stroke weight
-7 | Ultra Thin 1 Semi Bold
—6 | Extra Thin 2 Demi Bold
=5 | Thin 3 Bold
—4 | ExtraLight || 4 Extra Bold
-3 | Light 5 Black
—2 | Demi Light || 6 Extra Black
-1 | Semi Light 7 Ultra Block
0 Medium 9999 | Stick font

If the stick font is selected (typeface 48), selecting a stroke weight of 9999
causes stick font characters to be rendered at the current pen width.

Typeface
Line printer 0 or 4096
Courier 3 or 4099
Times 5 or 4101
Stick font 48
Univers 52 or 4148

If no font with all the specified attribute values is available, the printer
attempts to match the requested font as closely as possible using an avail-
able font. Attribute number determines the priority order in which attributes
are matched; symbol set has the highest priority and typeface the lowest.
This is analogous to the font selection procedure in PCL mode. See the
explanation of font selection on page 77 of Chapter 4.

174

The command without parameters defaults the standard font attribute set-
tings. The default standard font settings are as follows:

Default font settings
Attribute attribute Setting Equivalent value
Symbol set 1 Roman-8 277
Font spacing 2 Fixed 0
Pitch 3 9 cpi 9
Point size 4 11.5 point 11.5
Posture 5 Upright 0
Stroke weight | 6 Medium 0
Typeface 7 Stick font 48

Define alternate font
AD [attribute, value][..] [;]

attribute: font attribute

value: attribute value

The command defines the alternate font in terms of the seven font attributes.

Any number of attributes can be set: the current alternate font settings are
retained for any attributes not specified in the command.

The command without parameters defaults the alternate font attribute set-
tings. The default alternate font settings are the same as the default standard

font settings.

The command functions in the same way as the SD Define standard font

command.

175

Select standard font

SS [}]

The command makes the standard font the current font. Subsequent label
text 1s printed in the standard font.

The standard font remains selected until the printer receives an SA com-
mand or <SO> control code (ASCII code 14).

An <SI> control code (ASCII code 15) in a label string also selects the stan-
dard font.

The default standard font is the GL2 stick font. The DF; and IN; commands
make the stick font the standard font and select it as the current font.

Select alternate font

SA[]

The command makes the alternate font the current font. Subsequent label
text is printed in the alternate font.

The alternate font remains selected until the printer receives an SS com-
mand, an <SI> control code (ASCII code 15) or a DF; or IN; command.

An <SO> control code (ASCII code 14) in a label string also selects the
alternate font.

The default alternate font is the GL2 stick font.

Select primary font
Fl id[;]

id: font identity number.

The command selects a font as the primary (standard) font. The font is iden-
tified by number.

Any font to which a font identity number has previously been assigned in
PCL mode, may be selected. The font can be an internal font, a downloaded
font or a cartridge font.

The standard font’s attributes are set to those of the selected font.

If the selected font is scalable, a point size should first be specified with the
SD command. Otherwise the current standard font point size is adopted.

If the selected font is proportionally spaced, the current standard font pitch
is stored for future use.

If no font with the specified ID number is available, the command is
ignored.

176

Select secondary font
FN id[;]
id: font identity number.

The command selects a font as the secondary (alternate) font. The font is
identified by number.

Any font to which a font identity number has previously been assigned in
PCL mode, may be selected. The font can be an internal font, a downloaded
font or a cartridge font.

The alternate font's attributes are set to those of the selected font.

If the selected font is scalable, a point size should first be specified with the
AD command. Otherwise the current alternate font point size is adopted.

If the selected font is proportionally spaced, the current alternate font pitch
is stored for future use.

If no font with the specified ID number is available, the command is
ignored.

177

Define label

LB [char] term [;]
char: character string
term: terminator

The command prints character string labels.

Labels can include non-printing characters, such as carriage returns or line
feeds and must be terminated with a terminating character. The default ter-
minator i1s the <ETX> code (ASCII code 3). A different label terminator
may be defined with the DT command.

Printing starts from the current pen position unless a label origin has been
set by an LLO command.

Labels are printed even if the pen is up.

After the label has been printed the pen is at the bottom left-hand corner of
the next character’s character cell. The character cell is an imaginary bound-
ing box enclosing a single character. Each character in a font has its own
character cell definition. The character cell definitions determine the spacing
and alignment between successive characters.

A
tne
feed Point
size
Cap height
¥
Character -
Character width Baseline
origin Character
cell width

178

Define label terminator
DT [char [, mode]] [;]
char: character
mode: printing mode
The command defines a character as the label terminator.
mode = 0 causes the terminator to be printed as part of each string.
mode = 1 causes strings to be printed without the terminator appearing.

If mode is omitted, the terminator is not printed.

There must not be a space character between the letters DT and the termina-
tor character. If there is, the space character will be made the terminator.

If no parameters are supplied, the default terminator <ETX> (ASCII 3) is
used.

Label origin
LO [origin][;]
origin: label origin
The command determines the position relative to the current pen position

from which label printing starts.

There are eighteen possible settings: labels can be centered, left-justified or
right-justified relative to the current pen position, and vertically centered on,
above or below the current pen position. Each of these positions can be off-
set 25% of the currently selected font’s point size.

origin is either 1 — 9 or 11 — 19 and determines the offset as shown.

179

After a label has been printed, the pen position is at the bottom right-hand
corner of the final character’s character cell.

See the description of the LB Define label command on page 178 for a dia-
gram of the character cell.

The command sets the carriage return point to the new label origin; a car-
riage return after the last character of the label and before the terminating
character repositions the pen back at a label’s origin after printing.

Each sequence of characters that follow a carriage return in a label will be
printed from the label origin. Hence, several strings may be over-printed

The default label origin is at the bottom left-hand corner of the first charac-
ter’s character cell.

The command with no parameter defaults the label origin.

An LO command remains in effect until the printer receives another LO
command or a DF; or IN; command.

180

Absolute direction

DI[run, rise] [;]
run: label direction x-component
rise: label direction y-component

The command determines the direction in which labels are printed relative
to the coordinate system x-axis.

rise / run = the tangent of the angle between the label’s baseline and the x-axis.
run ard rise are clamped integers.
The command sets the carriage return point to the current pen position.

The text path set by the DV command and the absolute print direction
together determine the orientation and direction of text.

If run and rise are both O, the command is ignored.
The command without parameters sets the printing direction to horizontal.

100 LPRINT CHRS(27);"E";

110 LPRINT CHRS(27);"%0B";
120 LPRINT "INSP1IPO,0,4000,32008C0,10,0,5";
130 LPRINT "DIS8,4"; :REM Set text direction

140 LPRINT "DT*";

150 LPRINT "SD2,1,4,18,7,4";

160 LPRINT "PUO,0";

170 LPRINT "LB First text string*";

180 LPRINT "DV1,1"; :REM Set text path to vertical

190 LPRINT "SD4,12";

200 LPRINT "PUS,4";

210 LPRINT "LBSecond”;CHRS(13);CHRS(10}; "text string*";
220 LPRINT CHRS (27);:"%0A";

230 LPRINT CHRS(27);:"E";

240 END
%\e
<
(ST
(o]
\&6\ (\6 S
&
& >
<<‘\’\

181

Relative direction

DR [run, rise][;]
run: label direction Xx-component
rise: label direction y-component

The command determines the direction in which labels are printed as a per-
centage of the horizontal and vertical distances between P1 and P2.

run and rise are clamped integers.
The command sets the carriage return point to the current pen location.

Changes to the relative positions of P1 and P2 cause the relative printing
directton to change.

100 LPRINT CHRS (27);"E";

110 LPRINT CHRS(27);"%0B";

120 LPRINT "INSP1IPO,0,3000,15008C0,10,0,10";

130 LPRINT "DR3,5"; :REM Set relative text direction

140 LPRINT "DT*"“;
150 LPRINT "SD2,1,4,10,7,52";
160 LPRINT "PU3,2";
170 LPRINT "LBFrom a new angle*";
180 LPRINT "IP300,0,1300,1500";
190 LPRINT “PU3,2";
200 LPRINT "LBFrom a new angle*";
210 LPRINT CHRS(27);"%0A";
220 LPRINT CHRS(27);"E";
230 END
enew P2 P2
[g
& N
3 &
S &
@ <
5 &
c <
Pl oo
new P1

The text path set by the DV command and the relative print direction
together determine the orientation and direction of text.

If run and rise are both 0, the command is ignored.

The command without parameters sets the printing direction to horizontal.

182

Define variable text path

DV [path [, action]] [;]
path: text printing path
action: line feed action

The command sets the label printing direction and the carriage return point.

The text path is defined relative to the current absolute or relative printing
direction. If no DI or DR command has been used, the text path is defined
relative to the coordinate system x-axis.

path is 0, 1, 2 or 3 and sets the text path as shown.

100 LPRINT CHRS$(27);"E";

110 LPRINT CHRS$({(27);"%0B";

120 LPRINT "INSP1S5C0,100,0,100";
130 LPRINT "DT*";

140 LPRINT "SD2,1,4,18,7,4"; 3
150 LPRINT "PU52,50"; =
160 LPRINT "LBText path=0*"; ‘
170 LPRINT "DV1"; a
180 LPRINT "PUS0,48"; P
190 LPRINT "LBText path=1*"; t
200 LPRINT "DV2"; 5
210 LPRINT "PU48,50"; T

220 LPRINT "LBText path=2*"; S=riisqixeT _ Textpath =0

230 LPRINT "DV3"; :
240 LPRINT "PU50,52"; x
250 LPRINT "LBText path=3*"; !
260 LPRINT CHRS$(27); "%0A"; p
270 LPRINT CHRS(27);"E"; g
280 END h

-

action = 0 causes a line feed to reposition the pen clockwise at an angle of
90° to the text path. For example, if path = 3, a new line of text will be
printed to the right of the previous line.

action = 1 causes a line feed to reposition the pen counterclockwise at an
angle of 90° to the text path. For example, if path = 2, a new line of text will
be printed below the previous line.

Changes to the positions of P1 and P2 do not affect the text path.

183

If action is omitted, a line feed repositions the pen clockwise at 90° to the
text path.

The default text path is horizontal; printing is from left to right. A line feed repo-
sitions the pen clockwise at 90° to the text: equivalent to a DV0,0; command.

The command with no parameters sets the text path to be horizontal, with
printing from left to right.

Character plot

CP [spaces |, lines] [;]
spaces: pen movement in spaces
lines: pen movement in lines

The command repositions the pen a specified distance.

The distance is specified as a number of lines and spaces. No plotting is per-
formed.

Pen movement is specified relative to the current printing direction.

spaces is the number of spaces the pen moves horizontally. A positive value
moves the pen to the right, a negative value moves it to the left.

lines is the number of lines the pen moves vertically. A positive value moves
the pen upwards, a negative value moves it downwards.

The height of a line and width of a space are determined by the current font’s
pitch (or space character width, if it is proportionally spaced) and line-spacing.
The line-spacing, the vertical distance the pen moves after a line feed, is defined
for every font, and may be adjusted with the ES Extra space command.

spaces and lines are clamped integers.
As the pen is repositioned, the carriage return point is adjusted accordingly.
The command does not affect the current pen state or margin settings.

The command with no parameters repositions the pen one line below the
carriage return point: equivalent to a carriage return/ line feed.

184

Character fill mode

CF[fill], pen]] [}]
Sill: il pattern
pen: pen number

The command specifies how text characters are to be edged and filled.

Scalable font characters may be edged and filled with any pattern that can be
selected with the FT command. Bitmap font characters and stick font char-
acters cannot be edged and may only be filled with a raster fill, shading pat-
tern or a PCL cross-hatch pattern.

Sfill may be 0, 1, 2 or 3.
fill = 0 fills all characters with a solid fill and edges scalable font characters.

fill = 1 edges scalable font characters but does not fill them, and fills bitmap
font and stick font characters.

fill =2 fills ali characters using the current fill type but does not edge them.

Jfill = 3 fills all characters with the current fill type, and edges scalable font
characters.

pen = 0 selects the white pen for edging.
pen = | selects the black pen.
If no pen is specified, the current pen is used.

The width of the pen vsed to edge a character is proportional to the charac-
ter’s point size.

The line width used in cross-hatch patterns can be set with the PW com-
mand.

The command with no parameters selects a solid fill and the white pen:
equivalent to CF0,0;

A CF command remains in effect until the printer receives another CF com-
mand, a DF; or an IN; command.

185

Set absolute character size

Sl [width, height] [;]
width: character width in centimeters
height: character height in centimeters

The command determines the size of label characters.

width is a clamped integer. A negative widrh produces mirror-image charac-
ters, except after an SB1; command.

height is a clamped integer. A negative height produces upside-down char-
acters.

100 LPRINT CHRS(27);"E";
110 LPRINT CHRS$(27);"%0B";
120 LPRINT "INSP1";
130 LPRINT "IP0,0,4000,2500,5C0,100,0,100";
140 LPRINT "DT*";
150 LPRINT "SD2,1,4,12,7,52";
160 LPRINT "SI.5,.75";
170 LPRINT "PUS50,160";
180 LPRINT "LBNormal text*";
190 LPRINT "SI.5,-.75";
200 LPRINT "PU50,140";
210 LPRINT "LBUpside-down text*";
220 LPRINT "SI.5,-1.5";
230 LPRINT "PUSQ,100";
240 LPRINT "LBBackward text*":
250 LPRINT "SI®-.5,-.75";
260 LPRINT "PU50,80";
270 LPRINT "LBBackward, upside-down text*";
280 LPRINT CHRS$(27); "%0A";
290 LPRINT CHRS (27);"E";
300 END
Normal text

nbaige-qomu [ex(

ixst biswios8

X8} umop-apisdn ‘premyoeg

A change to the character size may alter the line width of stick font characters.

The SB1; command may cause unexpected variations in character size.

186

Set relative character size

SR [width, height][;]
width: character width
height: character height

The command determines the size of label characters relative to P1 and P2.

width and height are specified respectively as a percentage of the horizontal
and vertical distances from Pl to P2.

width is a clamped integer. A negative width produces mirror-image charac-
ters.

height is a clamped integer. A negative height produces upside-down char-
acters.

Changes to the relative positions of P1 and P2 will alter the character size.

100 REM Program one

110 LPRINT CHRS (27);"E";

120 LPRINT CHRS(27);"%0B";

130 LPRINT "INSP1IP0O,0,3000,20008C0,100,0,100";
140 LPRINT "LO4";

150 LPRINT "DT*";

160 LPRINT "sD2,1,4,30,7,52";
170 LPRINT "PU50,50";

180 LPRINT "LBShrunken text*";
190 LPRINT CHRS (27);"%0A";

200 LPRINT CHRS(27);"E";

210 END

100 REM Program two

110 LPRINT CHRS(27);"E";

120 LPRINT CHRS(27); "%0B";

130 LPRINT "INSP1IP1000,0,2000,20008C0,100,0,100";
140 LPRINT "LO4";)

150 LPRINT "DT*";

160 LPRINT "SD2,1,4,30,7,52";
170 LPRINT "PUS50,50";

180 LPRINT "LBShrunken text*";
190 LPRINT CHRS(27);"%0A";

200 LPRINT CHRS(27);"E";

210 END

187

P2 . P2

|
‘ Shrunken text Shmen o

Pl - PT

If P2 is to the left of Pl, characters will appear in mirror-image. If P2 is
below P1, characters will appear upside-down.

A change to the relative character size may alter the line width of stick font
characters.

The SB1; command may cause unexpected variations in character size.

The command without parameters sets the character width to 0.75% of the
horizontal distance between P1 and P2, and the height to 1.5% of the verti-
cal distance between P1 and P2.

188

Set character slant
SL[tan][;]

tan: tangent of character slant angle
The command specifies a slant angle for label characters.
Only scalable font and stick font characters can be slanted.
A positive ran causes characters to slope forwards.
A negative tan causes characters to slope backwards.

100 LPRINT CHRS(27);"E";

110 LPRINT CHRS(27);"%0B";

120 LPRINT "INSP1IPO,0,3000,3000S8C0,30,0,30";
130 LPRINT "DR3.,5";

140 LPRINT "DT*";

150 LPRINT "SD2,1,4,25,7,52";

15Q LPRINT "SI.7,1";

170 LPRINT "SL.3";

180 LPRINT "PU10,10";

190 LPRINT "LBRForward slanting text*";
200 LPRINT "SL -.3";

210 LPRINT "PU10,3";

220 LPRINT "LBRackward slanting text*";
230 LPRINT CHRS$(27);"%0A";

240 LPRINT CHRS$S(27);"E";

250 END

Forward slanting text
Backward slanting text

If tan = 0, characters are upright.
tan is a clamped real number.

The command without parameters causes characters to be printed upright.

189

Scalable or bitmap fonts
SB[type][]
type: font type

The command enables or disables the use of bitmap fonts.
type = 0 specifies that only scalable fonts and the stick font may be selected.
tvpe = 1 specifies that any font may be selected.

An SB1; command may change the current standard or alternate font selec-
tion by allowing a bitmap font that better matches the most recently speci-
fied font attributes to be selected in preference to a scalable font.

An SB0; command will change the current standard or alternate font selec-
tion if either is currently a bitmap font.

Bitmap characters cannot be edged, can only be printed in orientations of 0°,
90°, 180° or 270°, and cannot be slanted. Bitmap font character sizes are
approximate only.

The FI and FN commands automatically enable bitmap font selection when
they select a bitmap font.

The command without parameters is equivaient to an SB0; command.

The default setting is scalable fonts and the stick font only.

190

Extra space

ES [width [, height]][;]
width: character spacing change
height: line-spacing change

The command adjusts label character and line spacing.

width specifies the number of extra spaces between characters. A negative
width removes spaces.

height specifies the number of extra lines between label lines. A negative
height removes lines.

The width of a space is either the current pitch setting (for a fixed-pitch
font), or the width of the space character (for a scalable font).

The line-spacing setting is determined by the current font.

Fractional values of width and height allow character and line spacings to be
fine-tuned.

width and height are clamped real numbers.

The command without parameters specifies no extra character or line spac-
ing.
An ES command remains in effect until the printer receives another ES
command or a DF; or IN; command.
Transparent data
TD [mode][]

mode: data transparency mode

The command determines whether control characters are printed.

mode = 0 selects normal printing: control codes perform their normal opera-
tions and are not printed.

mode = 1 selects transparent mode printing: characters are printed if possi-
ble and control characters do not perform any operation (unless a control
code is defined as the label terminator, in which case it will still perform this
function). Non-printable or undefined characters appear as a space.

The command without parameters selects normal printing: equivalent to TDO;

191

MEMO

192

CHAPTER

Truelmage

6.1 Introduction

Over the last five years technology has become available that allows per-
sonal computer users to produce high-quality printed output using nothing
more than a home computer, commercial software, and a laser printer. The
phrase “desktop publishing” has been coined, describing the facility with
which individuals can turn out professional-looking documents comprising
both text and graphics. Previously, quality document production was a cum-
bersome process involving traditional mechanical printing methods, and
printing jobs could only be carried out by professional printers possessing
the necessary training and equipment.

A significant factor in this computer-inspired revolution has been the Post-
Script page description language (PDL) written by Adobe Systems Inc.
PostScript is a means by which the design and contents of a page or
sequence of pages specified on a computer can be rendered by a laser printer
(or any other high-quality printing device, such as a Linotron).

Truelmage is a page description language developed by MicroSoft Corpora-
tion that is based on, and designed to be compatible with PostScript.

As well as PostScript compatibility Truelmage also incorporates the True-
Type font technology introduced by Apple Computer Inc. as part of the
Macintosh System 7 operating system, and incorporated by MicroSoft into
version 3.1 of the Windows operating environment for IBM PCs. Like Post-
Script fonts, TrueType fonts allow printer text output at any size.

To most users, Truelmage is simply a term denoting high-quality laser-
printed output; users compose documents on their computers (text, graphics,
tables or any combination) and print them out on their Truelmage printer.
The printer output is a faithful reproduction of their on-screen documents.

In fact, TrueImage is a computer language that can be used to describe
printed output. When a user creates a document using application software,
such as a word-processor or illustration program, he specifies the appear-

193

ance of the document on screen using the computer’s mouse and keyboard.
When he prints his document the application automaticaily converts the
document to a Truelmage page description program which is then sent via
cable to the printer. The Truelmage program is a sequence of commands
that are executed in order. A TrueImage program file (which might be gener-
ated by first printing the document to disk, instead of to the printer) is sim-
ply a text file containing the commands, which can be viewed and edited
using a text editor.

The printer contains a Truelmage interpreter, a program that executes the
in-coming Truelmage program commands, constructing and printing each
page of the computer-based document.

A Truelmage program is not unlike a program in C, BASIC or any other lan-
guage. However, the key difference is that Truelmage programs are, in most
cases, generated by an application, not by a human programmer.

The commands that make up the Truelmage language are known as opera-
tors. There are over 250 different operators offering a wide range of pro-
gramming facilities.

Truelmage page description programs are typically of the following format:
a short header block containing general information about the document, a
prologue section in which procedures are defined (e.g. a procedure to draw a
commonly-occurring shape) and set-up procedures applicable to the whole
document are performed, and then sections describing each individual page
separately. For example, the program sent to the printer when a ten-page file
mixing text and graphics produced using a page-layout program is printed
might well contain a short header with comments about the application and
the file, a prologue section defining a procedure to draw squares and output
elements common to every page such as a logo, followed by sections of
code individually describing each page in the document.

In short, applications send data to the printer in the form of executable True-
Image programs. To most users this is transparent, however, application
developers need to know the commands and structure of the TrueImage lan-
guage, in order to make their software generate appropriate output. Also, in
certain cases it is useful for users to be able to modify printer output by first
generating a Truelmage program file (by printing the document to disk) and
then editing it before sending it to the printer.

194

6.1.1 Truelmage output on different printers

Printers lay down an image on the page as a matrix of tiny dots. The greater
the number of dots per unit area of the page, the higher the quality of the
final image. Typically home or office laser printers have a resolution of
(300x300) dots per square inch. Higher-quality output devices, such as
Linotrons, typically have a resolution of (2400x2400) dots per inch.

Truelmage page descriptions describe output in terms of geometric shapes
defined numerically in terms of coordinates, not as a matrix of dots. The
printer itself converts the Truelmage code to a dot matrix, performing a pro-
cess known as scan conversion. Hence Truelmage is device independent, in
that the quality of the print-out (the smoothness of curves, appearance of
gray scales etc.) is limited only by the printing device’s own dots-per-inch
resolution, not by any inherent limitation in the Truelmage language.

195

6.2 Truelmage print model

The following model is used to describe the way in which Truelmage output
is built up by the printer. The image on a page is constructed by placing
paint on the page in selected areas. The painted areas can form any shape:
characters, geometric shapes, lines, shaded areas. The paint can be black,
white, gray or colored. Output can be restricted (clipped) to any area within
the page. When a page has been fully constructed it is printed out.

A print job may consist of any number of pages. Each page starts as com-
pletely white. TrueImage constructs and outputs each page in turn, working
to completion on each individual page, before commencing the next one.
The page which Truelmage is constructing at any given time is known as the
current page. When the current page ts complete the showpage operator is
used to print it out.

Paint marks of any color are always opaque and obscure any previously laid
down marks which they overlap. Hence the order in which elements of a
page are painted onto the page determines which are wholly visible and
which are wholly or partly obscured.

Paint operators paint each element onto the current page. The principle paint
operators are fill, stroke, show and image. fill fills an area, stroke draws a
line, show displays text characters and image renders an imported sampled
image, for example a scanned-in photograph.

Most paint operators function with reference to the current path. A path is
a sequence of connected and disconnected points, lines and curves that
define a shape and its position on the page. Path construction operators such
as newpath, moveto, lineto, curveto and arc, are used to build up the cur-
rent path. These operators do not mark the page, they merely define a shape
and a position on the page that the paint operators can work with. For exam-
ple, fill fills the current path and show outputs text starting at the endpoint of
the current path.

A subpath is a series of connected line segments (i.e. defined by operators
other than moveto and rmoveto). A path consists of one or more subpaths.
A subpath may be closed by the closepath operator, which joins a subpath’s
endpoint to its starting point.

196

A collection of settings known as the graphics state determine the way in
which path construction and paint operators are interpreted and hence the
appearance of printed output. Graphics state settings include parameters
such as the current path, line thickness, line pattern and current font. The
graphics state is described fully in a following section starting on page 199.
Many operators change the graphics state when they are executed. Two
operators, gsave and grestore, are provided to save and restore the current
state, enabling a Truelmage program to revert to a particular known state at
any time. For example, the stroke and fill operators both reset the current
path to empty when they are executed. To stroke and fill a path, the follow-
ing sequence of operators would be executed:

Path construction operators defining the path

gsave - to save the graphics state containing the defined path
stroke - to stroke the path

grestore - to restore the saved state and the old current path
fill - to fill the path

The current clipping path defines the area of the page to which output is
confined. The clipping path, which is part of the graphics state, can be arbi-
trarily complex.

A Truelmage page description normally consists of many operator calls.
The recurring pattern of operation is as follows:

Lay down a path using path construction operators.
Modify as necessary any graphics state settings, such as line-width.
Paint the path using paint operators.

197

6.3 Coordinate systems

Truelmage defines an ideal coordinate system, known as user space. All
Truelmage operations are defined in terms of user space coordinates. The
default user space origin is in the bottom left-hand corner of the page, and
its x- and y-axis units are 1/72".

The coordinate system that the printer uses to construct its output is known
as device space. User space and device space are completely independent of
one another. The Truelmage interpreter automatically maps user space to
device space when it executes a Truelmage page description.

The Truelmage interpreter maps user space to device space by maintaining a
current transformation matrix (CTM). Multiplying user space coordinates
by the CTM yields the corresponding device space coordinates. The CTM is
part of the graphics state (see next section).

Transposition operators, such as the translate, rotate and scale operators,
change the relationship between user and device space by modifying the
CTM, enabling page output and individual graphic elements to be posi-
tioned. For example, the area of a page on which a laser printer can place
output is normally less than the whole page; there is usually a small bound-
ary-around the outside of the page which cannot be painted. It is often useful
to make the user space origin map to a corner of this imageable area. Also
the desired rotation and scaling of output is subject to change, as users may
wish to print landscape pages or thumbnail miniature pages.

Since the CTM is part of the graphics state, a useful programming technique
is to use transposition operators in combination with gsave and grestore to
transpose a single graphic element. For example, a text string may be
printed in several different orientations by enclosing the rotate and show
commands within successive gsave, grestore pairs. Each coordinate rotaiion
is only current when the string is printed. All other page elements are unaf-
fected by the rotation.

In fact, it is more convenient to think of the transposition operators as trans-
posing user coordinate space relative to its default origin, unit size and ori-
entation, and this is the convention we shall adopt in this chapter.

198

6.4 Graphics state

The Truelmage interpreter maintains a collection of settings known as the
graphics state. These settings define the actual appearance of output gener-
ated when Truelmage operators are executed. Some operators change the
graphics state either directly or as a side effect to their main function. For
example, the setlinewidth operator sets the width of lines, and the fill oper-
ator, in addition to filling the current path, also resets the current path to
empty. Graphics states can be stored and retrieved; they are stored on the
graphics state stack. Stack operation is explained in the following section.

The parameters that make up the graphics state are as follows. Further explana-

tion will be found in the relevant operator and operator category descriptions.

Parameter Value Default (if any) Operators Elirectly
affecting the parameter
CT™M Current transformation matrix defin- Matrix mapping translate
ing the mapping from user space coor- | defaultuserspace | rotate
dinates to device space coordinate to device space scale
color The painting color Black sethbscolor
setrgbcolor
position Current position in user space Undefined Path construction
operators
path Current path as defined by path con- Empty Path construction
struction operators operators
clipping Path defining a boundary to which Imageable area clip
path output is clipped of page eoclip
font Currently selected font setfont
line width The thickness of lines in user coordi- 1 setlinewidth
nate units
line cap Line end shape Butt end setlinecap
line join Line join shape Mitered setlinejoin
halftone Gray scale setting or color intensity setscreen
screen
transfer Mapping of user gray scales to settransfer
device gray scales
flatness Smoothness of curved segments setflat
miter limit Maximum length of a mitered line join | 10 setmiterlimit
dash pattern | Pattern used for drawing lines Solid line setdash
device Current output device

199

6.5 Truelmage language features

6.5.1 Program execution

The Truelmage interpreter receives a Truelmage page description as a
sequence of objects which it executes in turn. The page description is
received as a stream of characters which the interpreter scans, looking for
tokens (short character sequences) that define objects. Objects may be data
(numbers, booleans strings and arrays) or program elements (names, opera-
tors and procedures). What execution of a particular object actually entails,
depends upon the object’s type. Objects are processed using a data structure
known as the operand stack. This is described below.

6.5.2 Regular and special characters

Any printable characters in the ASCII character set may be used in Truelm-
age programs, plus the whitespace characters (space, tab and newline). The
following special characters have particular meaning within a program: (,),
<, > [,], {. 1./ and %. Their significance is explained in the following sec-
tions. Characters other than printable ASCII and whitespace characters may
be used in a page description, however, their use is not recommended since
the results of their use are not always predictable. Any characters in a pro-
gram that do not belong to the group of special characters are referred to as
regular characters.

6.5.3 Comments

Comments in a TrueImage page description are preceded by a % character.
When the interpreter encounters a %, it ignores all characters up to the next
newline character, after which it resumes scanning the in-coming character
stream for recognizable Truelmage objects.

200

6.5.4 Truelmage objects

Truelmage objects may be any of the following types:

integer dictionary
real operator
boolean file

array mark
packedarray | null

string save
name fontID

integer - Decimal integers are represented by a string of digits, which may
have a sign, e.g. 100, =75 +10. Integers may also be specified in other bases
in the form base#number: e.g. a binary number might be specified as
2#10011, an octal number as 8#76767 or a hexadecimal number as
16#DEF1. Digits greater than 9 are represented by the letters A —F, or a — f.
Non-decimal numbers cannot be signed.

real - Real numbers are represented by an optional sign followed by a string
of digits, which may optionally contain a decimal point, an exponent, or
both. An exponent is represented by the character E or e followed by an
optional sign and one or more digits. e.g. 0.2, 38.4, —4.9, 45.7¢9, 2E-5

boolean - A boolean is either rrue or false.

array - An array is a one-dimensional collection of objects that can be
regarded as a single entity. The individual objects within the array need not
be of the same type and can be of any Truelmage object type. Hence an
array could contain an integer, a real and a boolean. An array appears in a
Truelmage program enclosed in square brackets e.g. [24 32.6 true | An exe-
cutable array (also known as a procedure) is a special type of array whose
objects can be executed in sequence. An executable array appears in a True-
Image program enclosed in curly brackets e.g. { add 4 mul }

packedarray - A packed array is simply a more compact representation of
an executable array. Packed arrays are read-only.

201

string - A string is stored as a list of integer character codes in the range
0 —255. A string appears in a Truelmage program enclosed within brackets
e.g. (This is a string). Within a string the \ character is used to escape special
characters and non-printing characters.

\n linefeed (newline) || \(open bracket

\r | carriage return \) close bracket

\t tab \ddd octal character code ddd - used
) to specify a character outside

\b backspace the standard character set.

\f form feed \newline | end of line (without the new-

line character becoming part
\\ backslash

of the string)

Alternatively a string may appear as a sequence of hexadecimal code pairs
enclosed in angle brackets e.g. <6D657C>. If the final character is missing it
is assumed to be 0. Whitespace characters in a hexadecimal string are
ignored.

name - A name can be any string of regular (non-special) characters that
cannot be interpreted as a number. Names stand for variables. Variables can
be of the following types: integer, real, boolean, array, packed array, string,
dictionary, file or fontID. As the interpreter encounters a name it will
attempt to execute it. The meaning of execution for different types of object
is described in the section entitled Execution. A name immediately preceded
by a/ or// is treated differently by the interpreter. This is also described in
the section entitled Execution.

dictionary - A dictionary is a table of key-value pairs. The keys in a dictio-
nary are normally names, though the string equivalent of a name may also
be used. Truelmage dictionary operators allow you to create dictionaries,
insert key-value pairs into dictionaries, look up values in a dictionary by
key, and perform various other operations. TrueImage automatically main-
tains a userdict which normally contains the current program’s name and
procedure definitions, and a systemdict, in which the actions associated
with operators are looked up. errordict is a dictionary listing error names
and associated error-handling procedures. Dictionaries are manipulated

202

using the dictionary stack. See the section on stacks on page 204. Truelmage
fonts are also dictionaries in which the keys are character names and the val-
ues procedures for rendering the characters’ shapes.

operator - An operator is one of Truelmage’s built-in commands, such as
add or fill. Operators are identified by name. When the interpreter encoun-
ters an operator object, it looks up the associated action and performs it. The
user is free to redefine the actions associated with any Truelmage operator
name.

file - A file is a readable or writable sequence of characters. Truelmage file
operators can be used to create and manipulate file objects. Truelmage pro-
vides two standard files: the standard input and standard output file. The
standard input file is normally the source of the page description program
being executed, the standard output file is the destination for the interpret-
er’s error and status messages.

mark - A mark object is used as a place-holder in the stack. Array and stack
operators make use of the mark.

null - The interpreter uses null objects to fill uninitialized positions in com-
posite objects such as arrays or dictionaries, when they are created.

save - A save object is a snapshot of Truelmage’s memory. Save objects are
used by the save and restore operators.

fontID - A fontID is a unique font identifier, inserted as a value in a font dic-
tionary.

Arrays, strings and dictionaries are known as composite objects. When cop-
ies of these types of object are made, the copies share data with the original.
When any other kind of object is copied, a separate copy of its value is
made.

203

6.5.5 Stacks

A stack is a data structure onto which the interpreter places (or pushes)
objects and from which it removes (or pops) objects. At any given time only
the topmost objects on the stack can be accessed. Truelmage operators pass
objects between one another using the operand stack. An example using
simple arithmetic will serve to demonstrate the principle. Suppose that the
stack contains several objects, the top two being the integer objects 14 and
23.

14

23

(A string)

14.2
[123]

If the Truelmage interpreter next encounters the operator add, it removes
the top two items, adds them and puts their sum back on top of the stack.

37

(A string)

14.2

[123]

Now suppose that it is required to multiply the top object, 37, by the third
object, the real number 14.2. The operator mul will multiply two numbers
together, however, like add it can only use the top two stack elements. At
this point direct stack manipulation comes in useful. The roll operator
rotates objects on the top of the stack, in preparation for other operators to
use. roll needs two parameters which must themselves be taken from the
stack. The program sequence 3 -1 roll first causes the interpreter to push the
two parameters onto the stack.

204

3

37

(A string)

14.2

[123]

then the roll operator immediately removes them,

37

(A string)

14.2

[123]

and rotates the three topmost elements into the new order shown. The values
3 and —1 instruct the roll operator to rotate the top three elements, bringing
the third element to the top, and moving the other two down one position.,

14.2

37

(A string)
[123]

Now the two numbers occupy the top two stack positions. If the interpreter
now receives a mul operator, the top two objects are multiplied and their
product placed on the stack.

5254

(A string)

[123]

205

The result, 525.4, is now available to any other operator that reads a number
from the top of the operand stack. All TrueImage operator activity can be
described in terms of the operand stack.

In addition to the operand stack the Truelmage interpreter maintains three
other stacks: the dictionary stack, the execution stack and the graphics
state stack.

The dictionary stack holds dictionaries that define the values associated with
names and the actions performed when procedures (executable arrays) are
called.

The execution stack holds the object (procedure or file) currently being exe-
cuted and all partially executed procedures and files that have been put on
hold while the interpreter executes a more recently encountered executable
object. The topmost object is the one currently being executed. When execu-
tion of the topmost object is complete, the object is popped off the top of the
stack.

The graphics state stack holds graphics states saved with the gsave operator.
Graphics states are popped from the stack, and made current by the grestore
operator. In keeping with the characteristic of the stack data structure,
graphics states can only be restored in the reverse order to that in which they
were saved. :

The four stacks are completely independent from one another. The operand
stack is under the control of Truelmage programs whose operators can push
and pop objects freely. Some dictionary operators can be used to manipulate
the dictionary stack, however, the two Truelmage-maintained dictionaries
userdict and systemdict cannot be popped. The execution stack is com-
pletely controlled by the interpreter. The graphics state stack is maintained
by the interpreter in response to the various graphics state, gsave and gre-
store operators encountered.

In this chapter references to “the stack” refer to the operand stack.

206

6.5.6 Syntax
The syntax of Truelmage programs is rather unusual. It differs from that of
most other programming languages, the notable exception being FORTH.

The difference is that in Truelmage programs commands (operators) are
preceded by their parameters (operands). Hence a typical Truelmage pro-
gram fragment might be as follows:

23 add % add 2 & 3
5 mul $ multiply result of 2x3 by 5
100 100 moveto % move to coordinate position (100,100)

200 200 lineto % draw a line from (100,100) to (200,200)

This rather strange looking order is used because of the way in which the
Truelmage interpreter processes in-coming programs. On receiving a num-
ber object, the interpreter pushes it onto the stack. On receiving an operator
object the interpreter executes the operator using the numbers on the top of
the stack as operands (parameters). Hence, the operands always precede the
operator in the programs, so that the interpreter receives them first.

207

6.5.7 Execution of objects

When the Truelmage interpreter receives an object (number, array, name
etc.) it attempts to execute it, unless the program syntax specifies otherwise.
The meaning of execution for each of the valid object types is summarized
below.

integer The number is pushed onto the stack.

real The number is pushed onto the stack.

boolean The boolean value (true or false) is pushed onto the stack.

array An array enclosed in [] brackets (a data array) is pushed onto
the stack.

An array enclosed in {} brackets (a procedure) is pushed onto
the stack if it is encountered directly by the interpreter as part
of the in-coming program stream. However, if the interpreter
encounters the procedure indirectly, i.e. by looking up a name
or operator in a dictionary, the interpreter executes each of the
objects in the array in turn.

packed array | A packed array is pushed onto the stack if it is encountered
directly by the interpreter as part of the in-coming program
stream. However, if the interpreter encounters the procedure
indirectly, i.e. by looking up a name or operator in a dictio-
nary, the interpreter executes each of the objects in the packed
array in turn

string A string constant enclosed in () brackets is pushed onto the
stack.

A string that has been made executable is pushed onto the exe-
cution stack and the interpreter scans through it, executing in
turn each of the objects that it encounters.

name The name is used as a key and is looked up in the current dic-
tionary. The value associated with the key is executed. This
value will also be an object of some kind.

dictionary The dictionary is pushed onto the stack.

operator The operator is executed. The actions associated with each
operator are described in the Operator section of this chapter.

file The file is pushed onto the execution stack and the interpreter
scans through it, executing in turn each of the objects that it
encounters.

mark The mark is pushed onto the stack.

null No action is performed.

save The save is pushed onto the stack.

fontID The fontID is pushed onto the stack.

208

Sometimes it is desirable to inhibit the execution of an object. For example,
to associate a name with a value, the operator def is used. def takes two
operands, the name and the value, which it reads from the operand stack.
Suppose we want to associate the name myvariable with the value 5, equiva-
lent to myvariable = 5 in a conventional programming language. The pro-
gram line

myvariable 5 def

will not work since the interpreter will attempt to execute the name myvari-
able by trying to look up an associated value. To suppress execution of an
object we can precede it with a /. Any object that the interpreter encounters
with a / before it is simply pushed onto the stack. Note that for some objects
execution entails pushing them onto the stack in any case, hence / is never
needed.

The program line
/myvariable 5 def

accomplishes the task of setting myvariable to 5.

There are cases where we may want the value of a name to be substituted for
the name itself. Preceding a name by // achieves this. When the interpreter
encounters a name preceded by // it immediately looks up the current value
of the name and replaces the name with the value. This process is simply a
substitution; the value is not executed. The purpose of this feature is to allow
programs to force the current value of a particular object to be used in a pro-
cedure.

209

6.5.8 Executable and access attributes of objects
Objects may explicitly be made literal (non-executable), or executable,
using the cvlit and cvx operators. Objects with the literal attribute are sim-
ply pushed onto the stack; those that are executable are looked up and exe-
cuted. Objects may also be assigned an access attribute, either unlimited,
read only, execute only or no access. These specity how Truelmage opera-
tors may or may not manipulate them.

6.5.9 Errors

Truelmage operators can generate errors for a number of reasons. On
encountering an error the interpreter restores the stack to the state it was in
when execution of the current object began, pushes the object onto the stack,
looks up the error name in errordict, and executes the associated procedure.
Default error procedures normally involve terminating the current program
and writing an error message to the standard output file.

Truelmage programs may modify errordict, defining new error-handling
procedures for given error names.

The possible errors are described in the Errors section on page 290. Each of
the possible errors that an operator can generate is listed under the opera-
tor’s description.

6.5.10 Virtual memory

Virtual memory is the name given to the storage area where the values of
Truelmage composite objects (arrays, dictionaries and strings) are held. A
pair of operators, save and restore, allow programs to save the state of the
virtual memory and restore it again at a later juncture. It is good practice to
encapsulate each separate page of a Truelmage page description program
within a save, restore pair. This has the effects of freeing up virtual memory
consumed by the pages as they are executed, and restoring the initial set of
conditions established by the program’s prologue section.

If you are using Legal-sized paper, less printer memory is available for use
as virtual memory. With the standard memory configuration, a YMerror
will be generated when the printer attempts to print. If you intend to use
Legal-sized paper, ensure that you install an additional 2MB of RAM at
least.

210

6.6 Fonts

Since the majority of printing work involves the production of text, TrueIm-
age is geared to support text and font handling at all levels. The printer
includes 35 built-in TrueType fonts, which are available for use at any time.
These fonts are listed in Chapter 7, the Technical Supplement. Additional
commercial TrueType fonts may be downloaded from the host computer. In
addition to supporting TrueType fonts, TrueImage can also use PostScript
type 1 fonts and type 3 (user-defined) fonts. For a general discussion of
fonts and related issues, refer to chapter 3 of this manual.

Typically a Truelmage program may simply select fonts for printing, select-
ing a built-in typeface and weight, and sizing it as required. Procedures may
be defined to select frequently-used fonts. On occasion, a different character
set may be required; this can be achieved using Truelmage operators. If
need be, a Truelmage program may even be used to define a font.

TrueType fonts are comprised of characters: each character is defined as a
graphical shape that can be rendered on the page. A TrueType font is a dic-
tionary that contains various information. Most importantly, the dictionary
contains the names of every character in the font, and for each name, a cor-
responding procedure for drawing the character. It also contains another dic-
tionary which associates character code numbers with character names.

Truelmage renders text using a collection of operators that take a string as
an operand and print it on the page at the current position. A Truelmage
string consists of a sequence of characters: each character represented by an
integer character code in the range 0 — 255. Truelmage maps each code to a
corresponding name, and then executes the procedure corresponding to that
name to render the character. The correspondence between codes and char-
acter shapes can be changed by changing the vector which defines how
codes correspond to character names.

Font operators prepare and select fonts for printing. A typical sequence is as
follows:

/Arial findfont

20 scalefont setfont

100 100 moveto

(This 1s a text message) show

This is a text message

21

findfont puts the Arial font dictionary on the stack. scalefont takes the dic-
tionary and creates a copy in which the characters are scaled by the specified
factor in user units. In this case a font whose size is 20 user space units is
created. Notice that size is defined in terms of user space units, not in typo-
graphic points. {The makefont operator can be used to scale a font by differ-
ent factors in the x- and y-directions, and to rotate and translate it). setfont
makes the font left on the stack by scalefont the current font. show then
prints the string “This is a text message”, using the selected font and starting
from the point (100,100). The moveto is necessary since the current position
must be known before a string can be printed. Each character in a font has a
certain width. Ordinarily printing a character updates the current position by
the character’s width.

To associate a name with a scaled font (or any other modified copy of a
font), the definefont operator is used. The new font may then be selected by
a unique name and need not be rescaled each time.

Effects can be applied to characters, for example they may be printed in
color or in a selected gray scale. The outline shapes of characters may be
appended to the current path using the charpath operator. This allows a
variety of effects, such as the use of a string as a mask: only shapes enclosed
within the character shapes may appear on the page. The following sample
program demonstrates the use of this effect.

0 setgray

/Helvetica findfont 170 scalefont setfont
newpath 50 130 moveto

(JAPAN) true charpath

2 setlinewidth

clip

stroke

.5 setgray

newpath

300 200 moveto

300 200 40 0 360 arc

fill

.5 setgray

newpath

8 setlinewidth

0 10 360 {dup 5 add 300 200 300 4 index 3 index arc 300
200 lineto} for

stroke

212

213

6.6.1 Font caching

Truelmage renders characters by converting their shapes to a bitmap that
can be displayed on the printer. To avoid performing this conversion for
each single occurrence of a given character in a stream of text, TrueImage
stores (caches) bitmap representations of characters that it has already calcu-
lated. This allows much faster printing.

This process is entirely automatic, however, there are four operators that
allow explicit control of the font cache.

There is a maximum character size (in bytes) that is permitted for cached
bitmap images. Characters exceeding this size are not cached. There is also
a compression size limit. Characters small enough to be cached that exceed
the compression size limit are cached and compressed. Compressed charac-
ters take up less space in the cache, but take longer to render, since they
must first be decompressed every time. These limits may be adjusted using
the font cache operators.

The font cache does not retain color or gray-scale information. For this rea-
son, some graphics operators, notably the image operator, may not be used
to define the shape of a character that is to be cached.

6.6.2 Font dictionaries

Font dictionaries contain certain key-value pairs. Some are fixed, while
some may be altered by TrueImage operators. The following key-value pairs
are mandatory.

FontMatrix | array matrix mapping character definition units to
user space units. Built-in fonts are defined on a
1000x1000 dot grid, hence their matrix is [0.001
000.001 00]

FontType integer | number indicating type. 1 for PostScript fonts, 3
for user-defined, 42 for TrueType.

FontBBox | array four-number array specifying lower-left and
upper-right character definition coordinates of
font bounding box, the smallest rectangle
enclosing the shapes of all characters in the font.

Encoding array array of 256 character names, defining character
code-to-character name mapping.

214

Built-in fonts also contain the following entries:

FontName name the font’s name
PaintType integer a code describing character appearance
0 - filled
1 - stroked
2 - outlined
3 - (setting held in character description)
Metrics dictionary | width and side bearing (although this is nor-
mally encoded in the character description)
StrokeWidth | number stroke width for outline fonts (PaintType 2)
FontInfo dictionary | dictionary containing further information
UniquelD integer unique font identifier
CharStrings dictionary | dictionary associating character names with
shape description procedures. (Shape descrip-
tions are stored in a protected format)
Private dictionary | further protected information

When fonts are named using definefont, a new key, FID, is inserted into the
dictionary and a FontID value is associated with it. When a copy of an exist-
ing font is manipulated in some way, the copy’s FID key-value pair should

be discarded.

215

6.6.3 Character encoding

As already mentioned, font dictionaries map character names to shapes, and
the encoding vector maps character codes to names. Character names are
typically the character itself “T” or ‘t’, or a descriptive term, such as ‘amper-
sand’ or ‘four’. The encoding vector is a 256-element array that holds the
names of characters in successive array elements. The array index is used to
index the names, hence the order of the character names in the array deter-
mines the correspondence between integer character codes and the character
names.

If a particular code does not have a corresponding name, that position in the
array contains the name .notdef. Printing an undefined character produces
no visible output, however, undefined characters do have a small width,
causing the current position to be updated.

When a printing operator such as show attempts to print a character within a
string (say, character code 65) it first looks up element 65 in the encoding
vector to find the name of the character. Supposing the name of the character
is ‘A’, it then looks up the procedure value associated with the name ‘A’ in
the CharStrings directory of the current font dictionary, and executes it,
rendering the shape onto the page.

Character encoding may be altered by modifying the encoding vector. For
example, if element 65 of the vector is set to the name ‘four’, the character
code 65 in a string would be rendered according to the procedure definition
associated with the name ‘four’ in CharStrings.

Thus the mapping from character codes to character shapes may be freely
altered. This allows any character set to be combined with any typeface.

216

6.6.4 Font metrics

Font metrics are a set of parameters defining a character’s position relative
to the characters either side. Within a font character shapes are defined on a
grid coordinate system known as the character coordinate system.

Character '
origin
Left-side
beari
anng Character
width

Character rendering is referenced to the origin (0,0) of the character coordi-
nate system. Printing operators such as show align the character’s origin
with the user space current position when printing the character.

A character’s width is the distance between its origin and the point at which
the next character’s origin will be.

The bounding box is the smallest vertical rectangle that will enclose the
character’s shape. The bounding box is expressed in terms of its lower-left
and upper-right hand corners, and is stored in the font directory under the
key FontBBox.

The side bearing is the distance between the character’s origin and the left
edge of the bounding box. This distance may be negative.

217

6.6.5 Modifying fonts

Apart from simply specifying a size, the most common font manipulation
that is performed by TrueImage programs is to change the encoding. This is
done by making a copy of the font required, discarding the FID key-value
pair, and inserting a new encoding vector into the copy, under the key
Encoding.

The following example demonstrates how the EBCDIC encoding may be
applied to a copy of an existing font, to create a new font. The code assumes
that a dictionary newfontdict has already been defined, containing the
EBCDIC character code-to-character name mapping. The new font is stored
under the name Times-Roman-EBCDIC.

/Times-Roman findfont

dup length dict /newfontdict exch def

{ 1 index /FID ne

{newfontdict 3 1 roll put }

{pop pop}

ifelse

} forall

newfontdict /Encoding EBCDIC put
/Times-Roman-EBRCDIC newfontdict definefont pop

Similarly a font’s metrics may be altered. This is done by making a copy of
the font required, discarding the FID key-value pair, and inserting a new
dictionary into the copy, under the key Metrics. The new dictionary associ-
ates character names with either a new x-width only (specified as a single
number), or a new left side bearing and x-width (specified either as an array
of two numbers, or as an array of four numbers which specify vectors).

In the following example, this technique is used to create a new version of
the Courier font, New-Courier, in which the letters “A — Z” and “a — z” have
their x-widths and left-side bearings set to 900 and 50 character coordinate
units respectively. (One character coordinate unit = 1/1000 of a user space
unit).

218

/Courier findfont

dup length 1 add dict /newfontdict exch def

{ 1 index /FID ne

{newfontdict 3 1 roll put }

{pop pop}

ifelse

} forall

52 dict begin

(/» /B /C /D /E /F /G /H /I /J /K /L /M /N /O /P /Q /R /
s /T /U /V /X /Y /Z /a /b /c /& /e /f /g /h /1 /] /k /1
/m /n /o /p /g /r /s /t /u /v /x [y /z]

{50 900 def} forall

newfontdict /Metrics currentdict put end

/New-Courier newfontdict definefont pop

6.6.6 Creating a new font

Creating a new TrueType font is a significant undertaking. High-level appli-
cations exist to perform this function, so the need to create a font at the level
of Truelmage code will rarely surface. Briefly, a user-defined font must con-
tain the required font entries described above, must have a FontType of 3,
and must also contain a procedure called BuildChar that constructs the
characters according to the character coordinate system.

219

6.7 Graphic effects
6.7.1 Gray scales

On a monochrome printer, gray scales are rendered using a technique known
as half-toning. This involves laying down a screen, some pattern of black
and white pixels so that the result may appears as a shade of gray to the
naked eye. The half-tone screen is defined in terms of an imaginary grid of
rectangular cells covering the device space. Each printer pixel belongs in a
particular cell, and each cell normally contains many pixels. The grid’s fre-
quency is the number of cells per inch, and the grid may be orientated at any
angle to the device coordinate system. Each cell can be made .to approxi-
mate to a given gray scale by having a set combination of its pixels painted
black, and the rest left as white. The darker the gray scale, the more pixels
are painted black.

LA AR LR
LA AR KX
LA LR X K J
LR AR A X 3
LA AR X K 2
LA X LR
LA AKX R
LR A KK X J

5% gray scale using the
half-tone screen shown

A Truelmage program may re-define the half-tone screen by defining a pro-
cedure to determine the exact pixel color combination for any requested
gray scale. This can be set using the setscreen operator.

If gray scales specified by Truelmage are not accurately reflected on the
printer, a new mapping of specified gray levels to printer gray levels may be
defined using the settransfer function.

6.7.2 Filling complex paths

Complex paths that intersect themselves, or that contain subpaths that
enclose other subpaths, are filled according to one of two rules: the non-zero
winding rule and the even-odd rule. In either case, areas that are judged
inside the path are painted, areas outside the path are left blank.

Using the zero-winding rule, a point’s status is determined as follows. Imag-
ine a straight line from the point to a point outside the path. Start with a
counter at zero. Add one to the counter for each time the line is crossed by a

220

path segment from left to right, and subtract one for each time it is crossed
by a path segment from right to left. If the final result is zero, the point is
outside the path, otherwise it is inside.

The even-odd rule also imagines a straight line from the point to a point out-
side the path. If this line is crossed an odd number of times by path seg-
ments, it is inside the path, otherwise it is outside.

Polygons are filled in the same manner
irrespective of the direction of the
constituent sub-paths

fill paints paths using the zero-winding rule: eofill uses the even-odd rule. In
some instances each operator yields the same output. In other cases they will
generate different results.

221

6.7.3 Clipping path
The clipping path is a path that defines the area of the page in which graphic
output can appear. The clipping path can be any path. This feature enables
images or other graphic elements to be clipped, and also allows interesting
special effects to be achieved.

—

6.7.4 Importing images

Sampled bitmap images, such as TIFF images, may be rendered as part of a
Truelmage page description. The image operator performs this function.
The image can be from any source; typically it may be read from a file.
Image samples (pixels) may be rendered in up to 256 gray scales.

Images are read as a set of raster rows, from left to right, and from bottom to
top. image always renders the image starting at the point (0,0), so it is usu-
ally necessary to use translate immediately beforehand.

222

6.8 Operators
6.8.1 Operator description syntax

This section contains explanation of all Truelmage operators available in the
language version implemented on this printer. The formal specification of
each operator shows the operator name in bold, preceded by its operands
(the objects it takes from the operand stack), and followed by the objects
that it places on the operand stack. A dash preceding the operator name indi-
cates that it takes no operands; a dash following the name indicates that it
returns no result. Hence this notation shows the state of the top of the stack
immediately before and immediately after execution of the operator. The
order in which operands are shown indicates their relative position on the
stack; the rightmost operand is on top.

The names used to describe operands either indicate their object type or the
parameter they represent. any stands for an object of any type, num stands
for an integer or real number, proc represents an executable array or packed
array, matrix is a six-number array, and font a font dictionary. angle, height
etc. are numbers that represent the suggested parameter.

The symbol |- represents the bottom of the stack.

6.8.2 Stack operators

pop

any pop -

discards the top stack element.
Errors - stackunderflow

exch

any, any, exch any, any;

exchanges the top two stack elements.
Errors - stackunderflow

dup

any dup any any

duplicates the top stack element.
Errors - stackoverflow, stackunderflow

copy

any, any, ... any, N copy any; any, ... any, anyy any, ... any,

duplicates the n stack elements any, to any,,

Errors - invalidaccess, rangecheck, stackunderflow, stackoverflow,
typecheck

223

index

any, ... anyg n index any,, ... any, any,

makes a copy of element any,, (the nth element down from the top of the
stack) and puts it on top of the stack.

Errors - rangecheck, stackunderflow, typecheck

roll

anyp.q ... anyp N jroll any(i.1y mod n --- @NYo @NYn.1 @NYj mod n

rotates the elements any, _; ... anythrough j stack positions. n is the number
of elements rotated. Positive j indicates that elements shift upwards with the
old topmost element(s) inserted at position. Negative j indicates that ele-
ments shift downwards with the former lowest element(s) brought to the top
of the stack.

(1) (2)(3) @) 3 -1 roll => (1) (3) (4 (2)
(H(2)(3) 44 2roll =>(3) (4 (1) (2)
Errors - rangecheck, stackunderflow, stackoverflow, typecheck

clear
I- anyy ... any, clear -
discards all elements from the stack.

count

I- anyy ... any, count |- any, ... any, n
returns the number of items on the stack.
Errors - stackoverflow

mark

- mark mark

pushes a mark object onto the stack. A mark acts as place-holder. The stack
may contain any number of marks.

Errors - stackoverflow

cleartomark

mark obj, ... obj, cleartomark - .

discards all objects from the stack above and including the topmost mark
object.

Errors - unmatchedmark

counttomark

mark obj, ... obj,, counttomark mark objy ... obj, n

returns the number of elements on the stack above the topmost mark object.
Errors - stackoverflow, unmatchedmark

224

6.8.3 Maths operators
add

num, num, add sum

returns the sum of the two numbers on top of the stack. The result is integer
if both operands are integers, and real otherwise.

Errors - stackunderflow, typecheck, undefinedresult

div

numy num, div quotient

returns the result of dividing num; by num,. The result is always real.
Errors - stackunderflow, typecheck, undefinedresult

idiv

inty int, idiv quotient

returns the result of dividing int; by int,. The result is always an integer.
Errors - rangecheck, stackunderflow, typecheck, undefinedresult

mod

inty int, mod remainder

returns the remainder left when dividing int; by int,. The result is always an
integer and has the same sign as int,.

Errors - stackunderfiow, typecheck, undefinedresult

mul

numy num, mul product

returns the product of the two numbers on top of the stack. The result is inte-
ger if both operands are integers, and real otherwise.

Errors - stackunderflow, typecheck, undefinedresuit

sub

numy num, sub difference

returns the result of subtracting num, from num;. The result is integer if
both operands are integers, and real otherwise.

Errors - stackunderflow, typecheck, undefinedresult

abs

numy abs num,

returns the absolute value of num;.
Errors - stackunderflow, typecheck

225

neg
numy neg numy

returns the result of multiplying num; by ~1.
Errors - stackunderflow, typecheck

ceiling

num, ceiling num,

returns the smallest integer value not less than num;. If num; is a real num-
ber, num, will be also.

Errors - stackunderflow, typecheck

floor

num; floor num,

returns the largest integer value not greater than num;. If num, is a real num-
ber, num, will be also.

Errors - stackunderflow, typecheck

round

numy round num,

returns the closest integer value to num . If num is equidistant between two
integers, the larger of the two is returned. If num; is a real number, num,
will be also.

Errors - stackunderflow, typecheck

truncate

numy truncate num,

returns the closest integer value obtained by removing fractional part from
num . If num, is a real number, num, will be also.

Errors - stackunderflow, typecheck

sqrt

num sqrt real

returns the square root of num.

Errors - rangecheck, stackunderflow, typecheck

atan

numy num, atan angle

returns the angle, in degrees, whose tangent is num ;/num,. The result is real.
num; and num, cannot both be 0.

Errors - stackunderflow, typecheck, undefinedresult

226

cos

angle cos real

returns the cosine of angle in degrees.
Errors - stackunderflow, typecheck
sin

angle sin real

returns the sine of angle in degrees.
Errors - stackunderflow, typecheck

exp
num exponent exp real

returns the result of raising num to the power exponent. The result is a real
number.

Errors - stackunderflow, typecheck, undefinedresult

In

num In real

returns the natural logarithm of num. The result is a real number.
Errors - stackunderflow, typecheck, undefinedresult

log

num log real

returns the base 10 logarithm of num. The result is a real number.
Errors - stackunderflow, typecheck, undefinedresult

rand

- rand int

returns a random integer in the range 0 — 231
Errors - stackoverflow

srand

int srand -

seeds the random number generator using int
Errors - stackunderflow, typecheck

rrand

- rrand int

returns an integer representing the current position in the random number
sequence. This result may be used by srand to reset the random number gen-
erator to the given position in the sequence.

Errors - stackoverflow

227

6.8.4 Logical operators
eq

any4 any, eq bool

compares two objects for equality, returning rrue if they are equal, false if
they are not. Simple objects are equal if their types and values are the same.
Composite objects other than strings are equal only if they share the same
value: separate, but identical, values are considered unequal. Strings are
equal if they are the same length and are made up of the same characters in
the same order. An integer and a real number can be equal to one another, as
can a name and a string.

The executable and access attributes of any; and any, need not be the same
for them to be considered equal.

Errors - invalidaccess, stackunderflow

ne

any, any, ne bool

compares two objects for inequality, returning false if they are equal, true if
they are net. Equality of objects is as described above under the eq operator,
Errors - invalidaccess, stackunderflow

ge

num; num, ge bool

returns true if num is greater than or equal to num,, and false if num; is less
than num,.

Errors - invalidaccess, stackunderflow, typecheck

gt

numy num, gt bool

returns true if num; is greater than numy, and false if num; is less than or
equal to num,.

Errors - invalidaccess, stackunderflow, typecheck

le

num; num;, le bool ,

returns frue if numy is less than or equal to num;, and false if num; is greater
than num,.

Errors - invalidaccess, stackunderflow, typecheck

It

numy nums, It bool

returns frue if num; is less than num,, and false if num; is greater than or
equal to num,.

Errors - invalidaccess, stackunderflow, typecheck

228

and

bool bool and bool

int int and int

If the operands are boolean, and returns true if both are true and false other-
wise. If the operands are integers, and converts them to binary, performs a
bitwise ‘and’ operation, and returns the result as a decimal integer.

Errors - stackunderflow, typecheck

not

bool not bool

int not int

If the operand is boolean, not returns the opposite boolean value. If the
operand is an integer, not converts it to binary, performs a bitwise ‘not’
operation, and returns the result as a decimal integer.

Errors - stackunderflow, typecheck

or

bool bool or bool

int int or int

If the operands are boolean, or returns true if either is true and false if both
are false. If the operands are integers, or converts them to binary, performs a
bitwise ‘inclusive or” operation, and returns the result as a decimal integer.
Errors - stackunderflow, typecheck

Xor

bool bool xor bool

int int xor int

If the operands are boolean, xor returns true if one of them only is true and
false if both are true or both are false. If the operands are integers, xor con-
verts them to binary, performs a bitwise *exclusive or’ operation, and returns
the result as a decimal integer.

Errors - stackunderflow, typecheck

true

- true true .

pushes a boolean object with value true onto the stack.
Errors - stackoverflow

false

- false false

pushes a boolean object with value false onto the stack.
Errors - stackoverflow

229

bitshift

inty shift bitshift int,

converts inf to binary, shifts the binary number left by shift bits, and returns
the result as a decimal integer. Bits shifted out are lost, zeroes are shifted in
from the right. A negative value of shift causes a right shift to be performed
(which will only be arithmetically correct if the original number is positive).
int and shift must both be integers.

Errors - stackunderflow, typecheck

230

6.8.5 Path construction operators

newpath

- newpath -

sets the current path to empty. After a newpath the current point is unde-
fined. Use the moveto operator to set a new current point, and start the defi-
nition of a new path.

currentpoint

- currentpoint x y

returns the user coordinates of the current point, the endpoint of the current
path. Since the Truelmage interpreter always immediately converts points in
the current path to device space coordinates, modification to the CTM will
change the (x,y) values returned by a given device space point.

Errors - nocurrentpoint, stackoverfiow, undefinedresuit

moveto

Xy moveto -

sets (x,y) to be the current point, thereby starting a new subpath within the
current path. moveto does not add any line segments to the current path. If
the previous current point is not connected to any other point by a line,
moveto causes it to be deleted from the current path.

Errors - limitcheck, stackunderflow, typecheck

rmoveto

dx dy rmoveto -

sets the current point relative to the previous current point. (dx, dy) specifies
the coordinates of the new current point in relation to the previous one. If the
current path is empty, a nocurrentpoint error is executed. Otherwise
rmoveto functions in the same way as moveto.

Errors - nocurrentpoint, limitcheck, stackunderflow, typecheck

lineto

x y lineto -

adds a straight line segment to-the current path from the current point to
(x,y). (x,y) becomes the new current point. If the current path is empty, a
nocurrentpoint error is executed.

Errors - nocurrentpoint, limitcheck, stackunderflow, typecheck

231

rlineto

dx dy rlineto -

adds a straight line segment to the current path from the current point, (x,y),
to (x+dx,y+dy). (dx, dy) specifies the coordinates of the line endpoint in
relation to the current point. (x+dx,y+dy) becomes the new current point. If
the current path is empty, a nocurrentpoint error is executed.

Errors - nocurrentpoint, limitcheck, stackunderflow, typecheck

arc

X y radius angy ang, arc -

adds a circular arc to the current path, optionally preceded by a straight line
segment. (x,y) is the arc’s center, radius its radius, ang; the angle of eleva-
tion of the arc’s start point and ang, the elevation of its endpeint. Angles are
counterclockwise from the user space x-axis. The endpoint becomes the
new current point.

If the current path is not empty when arc is invoked, arc includes a straight
line from the current point to the arc’s start point. Otherwise no straight-line
segment is included.

If x- and y-axis units have been scaled to different sizes, the arc will appear
elliptical.

Endpoint

Current point

Errors - rangecheck, limitcheck, stackunderfiow, typecheck

232

arcn

x y radius angy ang, aren -

performs the same function as are, except that ang; and ang, are interpreted
as clockwise from the user space x-axis.

Errors - rangecheck, limitcheck, stackunderflow, typecheck

arcto

X1 Y1 Xo Yo radius arcto xty yty xt, yto

adds a circular arc to the current path, optionally preceded by a straight line
segment. The arc is defined by the radius radius and two lines, a line from
the current point to (x4, y¢), and a line from (x4, y4) to (x5, y»). These lines are
tangential to the arc.

arcto includes a straight line from the current point to the arc’s start point,
unless they coincide.

arcto returns the start and endpoints of the arc, (xty, yt;), and (xts, yt5). The
arc’s endpoint, (xt, yt,), becomes the new current point.

If x- and y-axis units have been scaled to different sizes, the arc will appear
elliptical.

If the current path is empty. a nocurrentpoint error is executed.

(x2,y2)

radius

Currentpoint e, 7 __________° v (x1,y1)
(xt1,yt1)

Errors - nocurrentpoint, rangecheck, limitcheck, stackunderfiow, typecheck,
undefinedresult

233

curveto

X1 Y{ X2 Yo X3 Y3 curveto -

adds a curve to the current path from the current point to the point (x3,y3).
(x3,y3) becomes the new current point. The three parameter points and the
current point define the curve geometrically. The lines from the current
point to (x},y;), and from (x,,y,) to (x3,y3) are tangential to the curve. The
curve leaves the current point in the direction of (x;,y;) and approaches the
point (x3,y3) from the direction of (x5,y7). (x1,y|) and (x,,y;) are control
points: their positions relative to the current point and (x3,y3) define how
steep the curve is along its length. The curve is always enclosed by the con-
vex quadrilateral linking the four points.

Current (x3,y3) Current .
point point (x2.y2)

Current (x3,y3)
point

If the current path is empty, a nocurrentpoint error is executed.
Errors - limitcheck, nocurrentpoint, stackunderflow, typecheck

rcurveto

dx4 dyy dx, dy, dxs dy; reurveto -

adds a curve to the current path from the current point, (x,y) to the point
(x+dx3,y+dy3). (x+dx3,y+dy;) becomes the new current point. rcurveto
functions in the same way as curveto except that the operand points are
specified relative to the current point.

Errors - limitcheck, nocurrentpoint, stackunderfiow, typecheck,
undefinedresult

234

closepath

- closepath -

closes the current subpath within the current path by adding a straight line
from the current point to the subpath’s starting point, the point moved to
with the most recent moveto or rmoveto operator.

Errors - limitcheck

flattenpath

- flattenpath -

replaces the current path with an equivalent path in which all curved seg-
ments are replaced by a series of straight lines that approximate the curves.
The degree of flattening is determined by the flatness parameter in the cur-
rent graphics state.

Errors - limitcheck

reversepath
- reversepath -
reverses the direction and order of all segments in each subpath of the cur-

rent path. The order of the subpaths within the current path remains
unchanged.

strokepath

- strokepath -

calculates the path that would tightly enclose the shape of the current path, if
it were stroked. The resulting path is made the current path.

Errors - limitcheck

charpath

string bool charpath -

calculates the path formed by the outlines of the characters in string, accord-
ing to the current font’s size and character definitions. charpath adds the
resulting path to the current path. If hool = true, charpath applies stroke-
path to the character path, otherwise it does not. Setting bool to true makes
the resulting path suitable for use with the fill or clip operators, but not with
stroke. If bool = false, the path is suitable for stroking only.

Fonts designed to be stroked have a dictionary PaintType value set to [;
fonts designed for filling have PaintType 2; and those designed for outlin-
ing have PaintType O.

Errors - limitcheck, nocurrentpoint, stackunderflow, typecheck

clippath

- clippath -

makes the current clipping path the current path. clippath can be used to
find out the printer’s imageable area.

235

pathbbox

- pathbbox II, Il ur, ur,

returns the user coordinates of the lower left- and upper right-hand corners
of the current path’s bounding box. The bounding box is a rectangle, with
sides parallel to the user space axes, that tightly encloses the current path
plus the control points of any curved segments in the path. To obtain the
bounding box of the current path alone (without curve control points), first
flatten the path with the flattenpath operator.

If the current path is empty, a nocurrentpoint error is executed.

Errors - nocurrentpoint, stackunderflow

pathforall

moveproc lineproc curveproc closeproc pathforall -

executes one of the four procedure operands on each element of the current
path in turn. Path elements fall into four categories, those defined with a
moveto or rmoveto, those defined with a lineto or rlineto, those defined
with a curve or arc operator, and those set with closepath. pathforall uses
the appropriate procedure for each segment.

For each element in turn pathforall executes a procedure as follows:

Element type (definition | Action

operators)

moveto, rmoveto push x,y : execute moveproc

lineto, rlineto push x,y : execute lineproc

curved . push X{,y1.X2,¥2,X3,y3 : €xecute curveproc
closepath push x,y : execute closeproc

If charpath has been used to define part of the current path, an invalidac-
cess error is executed. x and y coordinates are user space coordinates which
pathforall obtains by multiplying the device space coordinates by the
inverse of the CTM. If the CTM has been modified since the path was laid
down, the coordinates will be different to those that were used to define the
path. Conversely, pathforall may be used to convert a path defined in one
user coordinate system for use in another.

Errors - stackunderflow, stackoverflow, typecheck

236

initclip

- initclip -

sets the clipping path to the printer’s default value; usually the imageable
arca. framedevice and banddevice can be used to set the default clipping
path.

clip

- clip -

closes any open subpaths in the current path and sets the clipping path to be
the intersection of the current clipping path with the current path. The inside
of the current path is established according to the non-zero winding rule; the
inside of the current clipping path is established according to whichever rule
was in force when it was set.

clip does not perform an automatic newpath. Subsequently defined path
elements are appended to the new path.

To restore the previous clipping path, enclose clip in a gsave, grestore pair.
Errors - limitcheck

eoclip

- eoclip -

performs the same function as clip, except that the inside of the current path
is established according to the even-odd rule.

Errors - limitcheck

237

6.8.6 Painting operators

erasepage

- erasepage -

paints the entire current page (not just the clipping path) using gray level 1,
which is usually white. The settransfer operator can be used to assign a dif-
ferent mapping of Truelmage gray scales to device gray scales.

fill

- fill -

fills the current path with the current color. Any open subpaths of the current
path are automatically closed. fill uses the non-zero winding rule to deter-
mine the inside of a path. After filling the current path fill sets the current
path to empty. To preserve the current path, encapsulate fill within a gsave,
grestore pair.

Errors - limitcheck

eofill

- eofill -

fills the current path with the current color. eofill uses the even-odd rule to
determine the inside of a path. Otherwise, it behaves identically to the fill
operator.

Errors - limitcheck

stroke

- stroke -

paints a line tracing the current path using the current color. stroke renders
lines according to the current graphics state settings. After stroking the cur-
rent path stroke sets the current path to empty. To preserve the current path,
encapsulate stroke within a gsave, grestore pair.

A subpath consisting of a single point, or more than one point at the same
coordinates, will be stroked only if the subpath is closed and round caps are
the current line cap setting. Otherwise no output is generated.

Errors - limitcheck

238

image

width height bps matrix proc image -

draws an imported image on the current page. The image is made up of sam-
ples, each sample corresponding to one pixel in the original image. The
image is width x height pixels in dimension, and each pixel is represented by
bps bits. bps can be 1, 2, 4 or 8. The image is rendered starting from (0, 0).
matrix maps the image to user space. The image data is received as a stream
of-characters (values from 0 to 255), one row at a time. Each row consists of
a whole number of characters, any trailing bits within the final character of a
row are ignored. image executes proc as many times as iS necessary to
obtain the specified amount of data. Any extra data is discarded. For each
sample a bit setting of all 1s maps to a white pixel, and all Os to a black.
Intermediate gray scales have values in between.

newpath

10 10 translate

18 18 scale % graphics unit is 1/4 inch square

16 102 [1 0010 0]
{<00000000000000000000000077777777777777777777777777777
77799999999ff00ff0033333333>} image

% 16*10 pixels, 2 bits/pixel, 1*1 pixel/graphics unit
showpage

Errors - stackunderflow, typecheck

239

imagemask

width height polarity matrix datasrc imagemask -

dict imagemask -

performs a similar function to the image operator, rendering an imported

image onto the current page. imagemask uses the source image as a mask of

one-bit samples to build up an image in the current color.

Parameters may be specified as a list of objects or as a single dictionary

object that contains the relevant key-value pairs.

The image is width x height pixels in dimension and is rendered starting

from (0, 0).

polarity is a boolean value that determines the mask’s polarity. If polarity =

true, those parts of the image represented by 1 are painted, those represented

by O are left unchanged. If polarity = false, parts represented by O are

painted, and those represented by 1 are left unchanged. In the second form

of imagemask, the polarity is specified by the Decode entry in the image

dictionary. Decode values of [1,0] and [0,1] correspond to frue and false

respectively.

matrix maps the image to user space.

datasrc may be a procedure, string or readable file object. imagemask either

executes or reads from darasrc as many times as is necessary to obtain the

specified amount of data. The image data is received as a stream of charac-

ters (values from 0 to 255), one row at a time. Each row consists of a whole

number of characters. Any trailing bits are discarded.

Any extra image data is discarded.

Errors - stackunderflow, typecheck, undefinedresult, limitcheck,
invalidaccess, ioerror

240

6.8.7 String operators

string

int string string

creates a string of length int and initializes all characters to the value 0. int
may not be negative.

Errors - limitcheck, rangecheck, stackunderflow, typecheck, VMerror

length

string length int

returns the number of characters in the string.
Errors - invalidaccess, stackunderflow, typecheck

get

string index get int

returns the character in the string identified by index. index can range from O
to n—1, where n is the number of characters in the string.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck, undefined

put

string index int put -

replaces the character in the string identified by index with int. index can
range from O to n—1, where n is the number of characters in the string.
Errors - invalidaccess, rangecheck, stackunderfiow, typecheck

getinterval

string index count getinterval substring

creates a new string comprising a sequence of count characters from the
original string, starting from the character in string identified by index. index
+ counrt cannot exceed the number of characters in the string. count must be
positive.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck

putinterval

string; index string, putinterval -

copies string, into string,, replacing the sub-sequence of characters of
string; beginning with the character identified by index.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck

241

copy

string string, copy substring

copies all characters of string; into string,, returning the initial substring of

string, that contains the copied characters. The executable and access

attributes of substring are the same as those of string,. string; cannot be

longer than string,.

Errors - invalidaccess, rangecheck, stackunderflow, stackoverflow,
typecheck

forall

string proc forall -

executes proc on each character of the string in turn. The integer representa-
tion of each character, starting with the first, is pushed onto the stack for use
by proc. If proc does not use or dispose of the string’s integer character rep-
resentations, they will build up on the stack. If proc executes an exit, forall
ceases ex=cution. If the string is O characters long, proc is not executed.
Errors - invalidaccess, stackunderflow, typecheck

anchorsearch

string seek anchorsearch post match true

string seek anchorsearch string false

tests to see whether the string seek matches the start of the string string. If it
does, anchorsearch returns true, match, the matching part of string, and
post, the rest of string. If seek does not match, anchorsearch returns false,
and the original string string. In order to match, seek must be no longer than
string.

Errors - invalidaccess, stackunderflow, stackoverflow, typecheck

search

string seek search post match pre true

string seek search string false

tests to see whether the string seek matches any substring of the string
string. 1f it does, search returns true, pre, the non-matching starting
sequence of string, match (the matching part of string) and post, the rest of
string. If seek does not match, search returns false, and the original string
string. In order to match, seek must be no longer than string.

Errors - invalidaccess, stackunderflow, stackoverflow, typecheck

242

token

string token post obj true

string token false

scans string, searching for a token that represents a Truelmage object. If

token can locate an object token within string, it returns true, the object

itself, and the substring from the end of the token to the end of the string. If

token cannot locate an object token within string, it returns false. The object

can be a number, name, string, data array or executable array. The object is

the same as the object that would be returned if the string were executed

directly, however, the object is not executed, merely pushed onto the oper-

and stack.

Only the first object encountered is returned. To parse the whole string,

repeated use of token would be necessary.

token discards all characters up to the final character of the token. If the

token is a name or number, the first following whitespace character is dis-

carded as well. If the token is a string or array ending with a), >,] or }, that

character (but no following characters) is discarded.

Errors - invalidaccess, ioerror, rangecheck, stackunderflow, stackoverflow,
syntaxerror, typecheck, undefinedresult

eq

string4 string, eq bool

compares two strings, or a string and a name, for equality, returning true if
they are equal, false if they are not. Strings (or a sting and a name) are equal
if they are the same length and are made up of the same characters in the
same order.

The executable and access attributes of string; and string, need not be the
same for them to be considered equal.

Errors - invalidaccess, stackunderflow

ne

string, string, ne bool

compares two strings, or a string and a name, for inequality, returning false
if they are equal, true if they are not. Equality is as described above under
the eq operator.

Errors - invalidaccess, stackunderflow

243

ge

string, string, ge bool

returns true if string; 1s greater than or equal to string,, and false if string; is
less than string,. The two strings are compared character value by character
value until a pair of values is found that differ (or until one string is
exhausted). Whichever string’s character in the unequal pair has the higher
value (or whichever string is longer if all character pairs match) is consid-
ered the .greater of the two. Strings are equal if they are the same length and
are made up of the same characters in the same order.

Errors - invalidaccess, stackunderflow, typecheck

gt

string4 string, gt bool

returns true if string; is greater than string,, and false if string; is less than
or equal to string,. String ordering is as described under the ge operator
above.

Errors - invalidaccess, stackunderflow, typecheck

le

stringy string, le bool

returns frue if string; is less than or equal to string,, and false if string; is
greater than string,. String ordering is as described under the ge operator
above.

Errors - invalidaccess, stackunderflow, typecheck

it

string string, It bool

returns frue if string; is less than string,, and false if string; is greater than
or equal fo string,. String ordering is as described under the ge operator
above.

Errors - invalidaccess, stackunderflow, typecheck

244

6.8.8 Array operators

array

int array array

creates an array of length int, and initializes all elements to null objects.
Errors - rangecheck, stackunderflow, typecheck, VMerror

[

- [mark

pushes a mark object onto the stack, marking the start of a sequence of
objects that will be formed into an array.

Errors - stackoverflow

]

mark objg ... obj,,_¢] array

creates an array comprising all the elements above the topmost mark on the
stack. The object immediately above the mark is the first element of the
array, and the topmost object is the last.

Errors - unmatchedmark, VMerror

length

array length int

returns the number of elements in the array.
Errors - invalidaccess, stackunderflow, typecheck

get

array index get any

returns the array element identified by index. index can range from O to n—1,
where 7 is the number of elements in the array.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck, undefined

put

array index any put -

replaces the element in array identified by index with any. index can range
from O to n—1, where n is the number of elements in the array.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck

getinterval

array index count getinterval subarray

creates a new array comprising a sequence of count elements from the origi-
nal array, starting from the element in array identified by index. index +
count cannot exceed the number of elements in the array. count must be pos-
itive.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck

245

putinterval

array index subarray putinterval -

copies the elements of subarray into array, replacing the sub-sequence of
elements of array beginning with the element identified by index. If ele-
ments of subarray are composite objects, their values are shared between
array and subarray.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck

aload

array aload elementy ... element,,_; array

pushes the elements of the array onto the stack in order, followed by the
array itself.

Errors - invalidaccess, stackoverflow, stackunderflow, typecheck

astore

anyg ... any,_q array astore array

fills the array with the n objects any, to any,_;, where n is the array’s length.
anyg becomes the first element of the array and any,,_; the last.

Errors - invalidaccess, stackunderflow, typecheck

copy

array, array, copy subarray

copies all elements of array, into array,, returning the initial subarray of

array, that contains the copied objects. If elements of array; are composite

objects, their values are shared between array; and array,. The executable

and access attributes of subarray are the same as those of array,. array;

cannot be longer than array,.

Errors - invalidaccess, rangecheck, stackunderflow, stackoverflow,
typecheck

forall

array proc forall -

executes proc on each element of the array in turn. Each array element, start-
ing with element 0, is pushed onto the stack for use by proc. If proc does not
use or dispose of the array’s objects, they will build up on the stack. If proc
executes an exit, forall ceases execution. If array is empty, proc is not exe-
cuted.

Errors - invalidaccess, stackunderflow, typecheck

246

6.8.9 Packed array operators

packedarray

anyg ... any,_1 n packedarray packedarray

creates a packed array of length » that has the objects any to any,_; as its
elements. The resulting object is of type packedarrayrype, and is read-only.
In all other respects a packed array behaves in the same manner as an ordi-
nary procedure array.

Errors - rangecheck, stackunderflow, typecheck, VMerror

currentpacking

- currentpacking bool

returns the current array packing mode. The array packing mode can be set
with the setpacking operator.

Errors - stackoverflow

setpacking

bool setpacking -

sets the array packing mode to the specified value. true turns array packing
on; false turns it off. The Truelmage interpreter creates procedure arrays
when it encounters TrueIlmage program text enclosed between ‘{* and ‘}’. If
array packing is on, procedure arrays are created and stored in packed (com-
pact) form. If array packing is off, procedure arrays are created and stored in
ordinary form.

The array packing mode setting remains in effect until another setpacking
operator is encountered, or until a restore command restores a previous set-
ting.

Errors - stackunderflow, typecheck

length

packedarray length int

returns the number of elements in the packed array.
Errors - invalidaccess, stackunderflow, typecheck

get

packedarray index get any

returns the packed array element identified by index. index can range from 0
to n—1, where n is the number of elements in the array.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck, undefined

247

getinterval

packedarray index count getinterval subarray

creates a new packed array comprising a sequence of count elements from
the original packed array, starting from the element in packedarray identi-
fied by index. index + count cannot exceed the number of elements in the
packed array. count must be positive.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck

aload

packedarray aload elementy, ... element,,_; packedarray

pushes the elements of the packed array onto the stack in order, followed by
the packed array itself.

Errors - invalidaccess, stackoverflow, stackunderflow, typecheck

copy

packedarray, array, copy subarray

copies all elements of packedarray; into array,, returning the initial subar-

ray of array, that contains the copied objects. If elements of packedarray;

are composite objects, their values are shared between packedarray; and

array>. The executable and access attributes of subarray are the same as

those of array,. packedarray; cannot be longer than array,.

Errors - invalidaccess, rangecheck, stackunderflow, stackoverflow,
typecheck

forall

packedarray proc forall -

executes proc on each element of the packed array in turn. Each packed
array element, starting with element 0, is pushed onto the stack for use by
proc. If proc does not use or dispose ot the packed array’s objects, they will
build up on the stack. If proc executes an exit, forall ceases execution. If
packedarray is empty, proc is not executed.

Errors - invalidaccess, stackunderflow, typecheck

248

6.8.10 Dictionary operators

dict

int dict dict

creates an empty dictionary with space for int key-value pairs.
Errors - rangecheck, stackunderflow, typecheck, VMerror

length

dict length int

returns the number of key-value pairs currently in the dictionary.
Errors - invalidaccess, stackunderflow, typecheck

maxlength

dict maxlength int

returns the maximum possible number of key-value pairs that could be held
in the dictionary.

Errors - invalidaccess, stackunderflow, typecheck

begin

dict begin -

pushes dict onto the dictionary stack, making it the current dictionary, the
first dictionary in which the interpreter will look up the names it encounters.
Errors - dictstackoverflow, invalidaccess, stackunderflow, typecheck

end

-end -

pops the current dictionary off the dictionary stack, making the one below
the current dictionary. If end attempts to remove the bottom-most userdict,
a dictstackunderflow error is executed.

Errors - dictstackunderfiow

def

key value def -

adds the key-value pair to the current dictionary. If key already exists in the
dictionary, the corresponding value is overwritten.

Errors - dictfull, invalidaccess, limitcheck, stackunderflow, typecheck

249

load

key load value

searches the dictionaries on the dictionary stack for key and returns the value
corresponding to the first occurrence of key that it finds. load searches the
dictionary stack starting with the topmost dictionary (the current dictio-
nary), and works downwards. If key is not found, an undefined error is exe-
cuted.

load looks up values in exactly the same way as the TrueImage interpreter,
however, load merely returns the value, it does not try to execute it.

Errors - invalidaccess, stackunderflow, typecheck, undefined

store

key value store -

searches the dictionaries on the dictionary stack for kev and associates value
with the first occurrence of key that it finds. If key is not found, the key-value
pair is added to the current dictionary. store searches the dictionary stack
starting with the topmost dictionary (the current dictionary), and works
downwards.

Errors - dictfull, invalidaccess, limitcheck, stackunderflow

get

dict key get any

returns the value corresponding to key in dict.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck, undefined

put

dict key any put -

associates any with key in the dictionary. If key is already present in dict, put
overwrites the existing value with any. If key is not present, the new key-
value pair is added to dict. If dict is full, a dictfull error is executed.

Errors - dictfull, invalidaccess, rangecheck, stackunderflow, typecheck

known

dict key known bool

returns true if key is present in dict, false otherwise. dict need not be on the
dictionary stack.

Errors - invalidaccess, stackunderflow, typecheck

250

where

key where dict true

key where false

searches the dictionaries on the dictionary stack for key. If it finds key,
where returns frue and the dictionary containing the first occurrence of key.
where searches the dictionary stack starting with the topmost dictionary (the
current dictionary), and works downwards. If key is not found, where
returns false.

Errors - invalidaccess, stackoverflow, stackunderflow

copy

dict, dict, copy dict,

copies all key-value pairs in dict; into dict,, returning dict,. If some values
in dict; are composite objects, they are shared between dict; and dict,. The
executable and access attributes of dicr, are the same as those of dict;. dict,
must initially contain no key-value pairs, and must be at least as long as

diCt] .

Errors - invalidaccess, rangecheck, stackunderflow, stackoverflow,
typecheck

forall

dict proc forall -

executes proc on each element of the dictionary in turn. The key and the
value of each key-value pair is pushed onto the stack for use by proc. If proc
does not use or dispose of the dictionary’s keys and values, they will build
up on the stack. If proc executes an exit, forall ceases execution. If dict is
empty, proc is not executed.

The order in which key-value pairs are processed by forall is unspecified.
New key-value pairs generated by proc may or may not have proc executed
on them.

Errors - invalidaccess, stackunderflow, typecheck

errordict

- errordict dict .

pushes errordict onto the operand stack. errordict is the dictionary which
associates the name of each error with an action.

Errors - stackoverflow

251

systemdict

- systemdict dict

pushes systemdict onto the operand stack. systemdict is the dictionary
which associates the name of each Truelmage operator with its correspond-
ing action.

Errors - stackoverflow

userdict

- userdict dict

pushes userdict onto the operand stack. userdict is the dictionary associat-
ing names defined by Truelmage programs with their values.

Errors - stackoverflow

currentdict

- currentdict dict

pushes currentdict onto the operand stack. currentdict is the dictionary on
the top of the dictionary stack.

Errors - stackoverflow

countdictstack
- countdictstack int
returns the number of dictionaries currently on the dictionary stack.

Errors - stackoverflow

dictstack

array dictstack subarray

copies the names of all dictionaries on the dictionary stack into array,
returning the initial subarray of array containing the dictionary names. dict-
stack writes the bottommost dictionary name into element 0 of array, and
the topmdst into element n—1, where # is the number of dictionaries on the
dictionary stack. If array is too small to hold all the names, a rangecheck
error is executed.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck

252

6.8.11 Control operators

exec

any exec -

pushes the operand onto the execution stack, causing it to be executed
immediately. The effects of executing an object depend on its type and
access attribute, as discussed in the section Execution of objects on
page 208.

Errors - stackunderflow

if

bool proc if -

executes proc if bool = true.

Errors - stackunderflow, typecheck

ifelse

bool proc, proc, ifelse -

executes proc; if bool = true, or proc; if bool = false.
Errors - stackunderflow, typecheck

for

start increment finish proc for -

executes proc repeatedly. for maintains a counter whose initial value is start
and which is increased to finish in steps of increment. proc is executed each
time the counter is incremented. The value of the counter is pushed onto the
stack for use by proc. If proc does not use or dispose of it, successive values
of the counter build up on the stack.

Execution ends when the counter’s value exceeds finish (or is less than fin-
ish, if increment is negative).

Errors - stackoverflow, stackunderflow, typecheck

repeat

int proc repeat -

executes proc int times. If proc contains an exit, repeat will terminate when
the exit is encountered by the interpreter.

Errors - rangecheck, stackunderflow, typecheck

loop

proc loop -

executes proc repeatedly until an exit or stop is encountered by the inter-
preter. If neither is encountered, execution continues until an external inter-
rupt (an interrupt error) is received.

Errors - rangecheck, stackunderflow, typecheck

253

exit

- exit -

jumps out of the innermost loop, initiated by a for, loop, repeat, forall,
pathforall or renderbands operator, popping the relevant operator and
everything above it from the execution stack. exit does not change the oper-
and or dictionary stacks.

If exit occurs in the context of a rum or stopped operator, an invalidexit
error is executed.

If there is no enclosing loop, quit is executed.

Errors - invalidexit

stop

- stop -

terminates execution of an executable object executed by a stopped opera-
tor, popping the stopped operator and everything above it from the execu-
tion stack. stop does not change the operand or dictionary stacks.

If there is no enclosing stopped context, quit is executed.

stopped

any stopped bool

executes any, returning false if any terminates normally, or true if any is ter-
minated by a stop. Irrespective of the outcome, normal execution is then
resumed.

Errors - stackunderflow

countexecstack

- countexecstack int

returns the number of objects on the execution stack.
Errors - stackoverflow

execstack

array execstack subarray

copies all elements on the execution stack into array, returning the initial
subarray of array containing the execution stack elements. The bottom-most
execution stack element is copied into array element O, the topmost into
array element (n—1), where # is the depth of the execution stack. The execu-
tion stack is not affected. If array is too small to hold all the elements of the
execution stack, a rangecheck error is executed.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck

254

quit

- quit -

terminates the current TrueImage program (if quit is looked up in userdict)
or terminates the operation of the Truelmage interpreter completely (if it is
looked up in systemdict). Normally the userdict definition takes prece-

dence.

start

- start -

executed by the TrueImage interpreter on start-up, to establish the working
environment.

255

6.8.12 Type and attribute operators
type

any type name
returns a name indicating the type of any.

type name type name
integer’ integertype dictionary dicttype

real realtype operator operatortype
boolean booleantype file filetype
array arraytype mark marktype
packed array | packedarraytype || null nulltype
string stringtype save savetype
name nametype fontID fonttype

name is executable.
Errors - stackunderflow

cvlit

any cvlit any

makes any literal (non-executable).
Errors - stackunderflow

CVX

any cvx any

makes any executable.
Errors - stackunderflow

xcheck

any xcheck bool

returns {rue if the object is executable, false if it is literal.
Errors - stackunderflow

256

executeonly

obj executeonly obj

reduces the access attribute of an array, packed array, file or string object to
execute only, and returns the modified object. Henceforth the object cannot
be read or altered. The access attributes of any objects sharing the value of
obj are not affected. executeonly cannot change an object’s access attribute
if it has been set to none.

Errors - invalidaccess, stackunderflow, typecheck

noaccess

obj noaccess obj

sets the access attribute of an array, packed array, file, dictionary or string
object to none, and returns the modified object. Henceforth the object can-
not be read, altered or executed. If obj is a dictionary, the access attributes of
any dictionaries sharing the value of obj are also set to none. For array,
packed array. file or string objects, the access attributes of any objects shar-
ing the value of obj are not affected.

Errors - invalidaccess, stackunderflow, typecheck

readonly

obj readonly obj

reduces the access attribute of an array, packed array, file, dictionary or
string object to read only, and returns the modified object. Henceforth the
object cannot be altered. If obj is a dictionary, the access attributes of any
dictionaries sharing the value of obj are also set to read only. For array,
packed array, file or string objects, the access attributes of any objects shar-
ing the value of obj are not affected. readonly cannot change an object’s
access attribute if it has been set to execute only or none.

Errors - invalidaccess, stackunderflow. typecheck

rcheck

obj rcheck bool

returns true if the array, packed array, file, dictionary or string object’s
access attribute allows reading of the object (i.e. the access attribute has not
been set to execute only or none), and false otherwise.

Errors - stackunderflow, typecheck

wcheck

obj weheck bool

returns true if the array, packed array, file, dictionary or string object’s
access attribute allows writing to the object (i.e. the access attribute is
unlimited), and false otherwise.

Errors - stackunderflow, typecheck

257

cvi

obj cvi int

converts a number or string to the equivalent integer. If obj is an integer, its

value is returned unchanged. If obj is a real number, it is converted to an

integer by truncation towards 0. If 0bj is a string whose characters represent

a legal Truelmage number, it is converted to the equivalent number, which,

if real, is converted to an integer by truncation towards 0.

If obj is a string whose characters do not represent a legal number, a

typecheck error is executed. If a real number is too large to be represented

as an integer, a rangecheck error is executed. (round, truncate, ceiling and

floor remove fractional parts without converting a number’s type).

Errors - invalidaccess, rangecheck, stackunderflow, syntaxerror, typecheck,
undefinedresult

cvn
string cvn name
converts a string operand to a name comprising the same characters as the

string. If the string is executable, the name is made executable.
Errors - invalidaccess, rangecheck, stackunderflow, typecheck

cvr

obj cvr real

converts a number or string to the equivalent real number. If obj is a real

number, its value is returned unchanged. If obj is an integer, it is converted

to real. If obj is a string whose characters represent a legal TrueImage num-

ber, it is converted to the equivalent number, which, if integer, is converted

to a real number.

If obj is a string whose characters do not represent a legal number, a

typecheck error is executed.

Errors - invalidaccess, rangecheck, stackunderflow, syntaxerror, typecheck,
undefinedresult

Ccvrs

num radix string cvrs substring

converts a number to an equivalent string representation in the specified
radix, writes it to szring, and returns the initial substring of string that holds
the number representation. If num is a real number, it is first converted to an
integer by truncation towards 0. The initial part of string is overwritten by
cvrs. Digits above 9 are represented by the letters A —Z. radix is a positive
decimal integer between 2 and 36.

If string is too small to hold the number’s representation, a rangecheck
error is executed.

Errors - invalidaccess, rangecheck, stackunderflow, typecheck

258

cvs

any string cvs substring

converts an object any to an equivalent string representation, writes it to
string, and returns the initial substring of string that holds the object’s string
representation. The initial part of string is overwritten by cvs.

If any is a number, cvs returns a string representation of the number. If any
is a boolean, cvs returns either the string true or false. If any is a string, cvs
simply copies its contents into string. If any is a name or an operator, cvs
returns the text representation of the name or operator name. If any is of any
other type, cvs returns the string (--nostringval--).

If string is too small to hold the result, a rangecheck error is executed.
Errors - invalidaccess, rangecheck, stackunderflow, typecheck

259

6.8.13 Font operators

definefont

key font definefont font

associates the font dictionary font with key (usually a name) in FontDirec-
tory. definefont checks that font contains all necessary key-value pairs, and
adds a key, FID, and corresponding FontID value. The dictionary must be
large enough to hold this extra key-value pair. The dictionary’s access is set
to read only.

Errors - dictfull, invalidfont, stackunderflow, typecheck

findfont

key findfont font

returns the font dictionary associated with kev in FontDirectory.
Errors - invalidfont, stackunderflow, typecheck

makefont

font, matrix makefont font,

returns a new font whose characters are the characters of font,;. transformed
by matrix. makefont creates a copy of font;’s dictionary and then multiplies
its FontMatrix value by matrix. Printing characters with the new font yields
the same results as would be achieved by multiplying the CTM by matrix,
and then printing using font,.

Errors - stackunderflow, typecheck

scalefont

font, scale scalefont font,

returns a new font whose characters are the characters of font;. scaled by a
factor of scale. makefont creates a copy of font;’s dictionary and then mul-
tiplies its FontMatrix value by scale. Printing characters with the new font
yields the same results as would be achieved by multiplying the CTM by
scale, and then printing using font;.

Errors - invalidfont, stackunderflow, typecheck, undefined

setfont
font setfont -
selects the current font. font must be a valid font dictionary returned by find-

font, scalefont or makefont.
Errors - stackunderflow, typecheck

currentfont

- currentfont font

returns the current graphics state’s current font dictionary.
Errors - stackoverflow

260

show

string show -

prints the string on the current page, starting from the current point, and

using the current font. Character spacing is determined by each individual

character’s width. When the string has been printed, the current point is

adjusted by the sum of the widths of the characters in string. If no current

point has been set, a nocurrentpoint error is executed.

Errors - invalidaccess, invalidfont, nocurrentpoint, stackunderflow,
typecheck

ashow

X y string ashow -

performs the same function as show, except that the width of each of the

string’s characters is modified by adding x to its x-width and y to its y-width.

This allows the spacing between characters to be modified. x and y are spec-

ified in user space coordinates, not in character coordinates.

Errors - invalidaccess, invalidfont, nocurrentpoint, stackunderflow,
typecheck

widthshow

X y char string widthshow -

performs the same function as show, except that the width of each occur-
rence of char in the string is modified by adding x to its x-width and y to its
y-width. This modifies the spacing between char and the character follow-
ing. char is a character code value in the range 0 — 255. x and y are specified
in user space coordinates, nol in character coordinates.

Errors - nocurrentpoint, stackunderflow, typecheck

awidthshow

Xy ¥4 char x, y, string awidthshow -

combines the functions of ashow and awidthshow, modifying the width of

each of string’s characters by adding x» to its x-width and y, to its y-width,

and modifying the width of each occurrence of char in the string by adding

X, to its x-width and v; to its y-width. This allows the spacing between char-

acters to be modified. and the spacing between char and the character fol-

lowing to be modified independently. x;, v, x, and y, are specified in user

space coordinates, not in character coordinates.

Errors - invalidaccess, invalidfont, nocurrentpoint, stackunderflow,
typecheck

261

kshow

proc string kshow -

performs the same function as shew, except that proc is executed in between

the printing of each successive pair of characters in string. The two charac-

ters (the one that has just been printed and the one about to be printed) are

pushed onto the stack prior to each invocation of proc so that proc may

make use of them. As each character is printed, the current point is updated

by the character’s width.

proc may alter the graphics state.

If proc does not make use of or dispose of the characters, they build up on

the stack.

Errors - invalidaccess, invalidfont, nocurrentpoint, stackunderflow,
typecheck

stringwidth

string stringwidth x y

returns the change in the current point that would result if string were
printed using show. x and v are specified in user space coordinates. string-
width may place characters in the font cache, if it executes their descrip-
tions.

Errors - invalidaccess, invalidfont, stackunderflow, typecheck

FontDirectory

- FontDirectory dict

pushes FontDirectory onto the operand stack. FontDirectory is the direc-
tory which associates keys with font directories and which contains the
names of all fonts present in virtual memory. FontDirectory has read-only
access, however, definefont can modity it.

Errors - stackoverflow

StandardEncoding

- StandardEncoding array

pushes the standard encoding vector onto the operand stack. The standard
encoding vector is a 256-element array, indexed by character code, that
holds the character names corresponding to each of the codes.

Errors - stackoverflow

262

6.8.14 Font cache operators

cachestatus

- cachestatus bsize bmax msize mmax csize cmax blimit

returns current consumption and maximum space available for the follow-
ing: bytes of bitmap storage (bsize and bmax), font/matrix combinations
(msize and mmax), and number of cached characters (csize and cmax), plus
the maximum number of bits that may be used to cache a single character,
blimit.

Errors - stackoverflow

setcachedevice

xy Il lly ur, ur, setcachedevice -

executed by a user-defined font’s BuildChar procedure, prior to the defini-
tion and rendition of a character. setcachedevice requests the interpreter to
place the character whose shape is rendered by the procedures which follow,
in the font cache (if possible) and on the current page. The interpreter uses
the information specified to decide whether to store the character in the
cache, and to render it on the page.

The operands are all specified in character coordinate system units. x and y
specify the characters width, Il,, Il,, ur, and ur, specify the lower-left and
upper-right corners respectively of the character’s bounding box.

Errors - stackunderflow, typecheck, undefined

setcharwidth

x y setcharwidth -

functions in the same way as setcachedevice, passing the interpreter the
character’s width, but designating that the character should not be stored in
the cache. setcharwidth should be executed instead of setcachedevice
when BuildChar is to execute setgray, setrghcolor, sethsbceolor, settrans-
fer or image.

Errors - stackunderflow, typecheck, undefined

setcachelimit

num setcachelimit -

sets the maximum number of bytes that may be used to cache the bitmap of
a single character. Any character larger than this will not be cached; its
description will be executed each time it is encountered. Characters already
in the font cache are not affected.

Errors - limitcheck, rangecheck, stackunderflow, undefinedfilename

263

setcacheparams

mark size lower upper setcacheparams -

sets the cache parameters to the values specified by the integer objects above
the topmost mark on the stack. All objects down to the topmost mark are
popped from the stack after execution. The number of cache parameters
may vary. If more than three parameters are specified, the topmost three are
used and the rest are ignored. If fewer than three parameters are specified,
default values are substituted.

upper is the maximum number of bytes that may be used to cache the pixel
array of a single character: the same parameter may also be set by setcache-
limit.

lower specifies a threshold size in bytes, above which characters may be
stored in compressed form. If lower = 0, all characters will be compressed.
If lower is greater than or equal to upper, compression is disabled.

size sets the new size of the font cache in bytes (equivalent to the bmax
parameter set by cachestatus). If size is not specified, the current cache size
is retained. If size is not within the range of permissable font cache sizes, the
nearest valid size is used instead. Reducing the font cache size may cause
some characters that are presently cached to be discarded.

Errors - rangecheck, typecheck, unmatchedmark

currentcacheparams

- setcachelimit mark size lower upper

pushes a mark object onto the stack, followed by the current cache parame-
ter settings. The cache parameters are as described above under setcache-
params; the number of cache parameters may vary.

Errors - stackoverflow

264

6.8.15 File operators

file

stringy string, file file

creates a file object for the file specified by string;. The access type is speci-

fied by string,: ‘r’ specifies an input (read-only) file, ‘w’ an output (write-

only) file. The file remains available for reading or writing until either it is

closed with closefile, an end-of-file character is read, or a restore is encoun-

tered whose corresponding save was performed before the file that created

the file object. %stdin and %stdout are the standard input and output files.

Errors - invalidfileaccess, limitcheck, stackunderflow, typecheck,
undefinedfilename

closefile

file closefile -

closes a file, breaking the association between the file object and the file
itself. If the file is an output file, any buffered characters are immediately
transmitted before the file is closed

Errors - ioerror, stackundertlow, typecheck

read

file read int true

file read false

reads a character from an input file, returning the integer representation of
the character and true, unless end-of-file is encountered, in which case read
returns false.

If a parity or checksum error occurs, an ioerror is executed.

Errors - invalidaccess, ioerror, stackoverflow, stackunderflow, typecheck

write

file int write -

appends a character to an output file file. int is the integer representation of
the character and should be in the range 0 to 255. If it is greater than 255, the
value of inr modulo 256 is used.

If the file is not a valid output filé, or some other error is detected, an ioerror
is executed.

Errors - invalidaccess, ioerror, stackunderflow, typecheck

265

readhexstring

file string readhexstring substring bool

reads pairs of hexadecimal digits from file, writing them into string, starting
at the beginning of the string. Reading continues until either the string is full
or an end-of-file is encountered. readhexstring returns the newly-written
substring of string, plus true if string was filled, or plus false if an end-of-
file was encountered before string could be filled. Characters other than
0-9and A - F (or a—f) are ignored.

Errors - invalidaccess, ioerror, rangecheck, stackunderflow, typecheck

writehexstring

file string writehexstring -

writes the characters of string to file as hexadecimal digits, starting from the
beginning of the string. writehexstring converts each character-code integer
in string to a pair of hexadecimal digits (0 — 9 or a —) and appends the dig-
its to the file.

Errors - invalidaccess, ioerror, stackunderflow, typecheck

readstring

file string readstring substring bool

reads characters from file, writing them into string, starting at the beginning
of the string. Reading continues until either the string is full or an end-of-file
is encountered. readstring returns the newly-written substring of string,
plus true if string was filled, or plus false if an end-of-file was encountered
before string could be filled. Characters read from file are all regarded sim-
ply as integers in the range 0 — 255. None are regarded as control codes.
Errors - invalidaccess, ioerror, rangecheck, stackunderflow, typecheck

writestring

file string writestring -

writes the characters of string to file, starting from the beginning of the
string. writestring does not append a newline to the file.

Errors - invalidaccess, ioerror, stackunderfiow, typecheck

readline

file string readline substring bool

reads a line of characters terminated by a newline character from file, and
writes them into string, starting at the beginning of the string. readstring
returns the newly-written substring of string, plus true if a newline character
was present, plus false if an end-of-file was encountered before a newline
character was read. The newline is not written to the string. If srring is filled
before a newline is read, a rangecheck error is executed.

Errors - invalidaccess, ioerror, rangecheck, stackunderflow, typecheck

266

token

file token any true

file token false

reads characters from file, searching for a token that represents a Truelmage

object. If token can read an object token from file, it returns the object and

true. If token cannot read an object token from file, it returns false. (If token

encounters an end-of-file without reading any non-whitespace characters, it

also closes the file).

The object can be a number, name, string, data array or executable array.

The object is the same as the object that would be returned if the file were

executed directly, however, the object is not executed, merely pushed onto

the operand stack.

Only the first object encountered is returned. To parse the whole file,

repeated use of token would be necessary.

token discards all characters up to the final character of the token. If the

token is a name or number, the first following whitespace character is dis-

carded as well. If the token is a string or array ending with a), >, | or }, that

character (but no following characters) is discarded.

Errors - invalidaccess, ioerror, rangecheck, stackunderflow, stackovertlow,
syntaxerror, typecheck, undefinedresult

bytesavailable

file bytesavailable int

returns the number of bytes available to be read immediately from file. —1 is
returned if end-of-file has been encountered or if the number cannot be
established.

Errors - ioerror, stackunderflow, typecheck

flush
- flush -
immediately sends any butfered characters to the standard output file.

Errors - ioerror

flushfile

file flushfile -

If file is an output file, flushfile immediately sends any buffered characters
to it. If file is an input file, flushfile reads characters from the file until it
encounters an end-of-file.

Errors - ioerror, stackunderflow, typecheck

267

resetfile

file resetfile -

disposes of any buffered characters associated with file. If file is an input
file, resetfile discards any characters that have been received from the file,
but have not yet been processed. If file is an output file, resetfile discards
any characters that have been written to file, but not yet transmitted.

Errors - stackunderflow, typecheck

status -

file status bool

returns true if file is still available for reading or writing, false otherwise.
Errors - stackunderflow, typecheck

run

string run -

reads and executes the contents of the file specified by string as a Truelmage
program. run closes the file on encountering an end-of-file or a stop opera-
tor. If an exit is encountered, an invalidexit error is executed.

Errors - ioerror, limitcheck, stackunderflow, typecheck, undefinedfilename

currentfile

- currentfile file

returns the file object from which the interpreter has most recently read pro-
gram input, the top file on the execution stack.

If the last token read by the interpreter was a name or number followed by
white space, characters can now be read starting from the character after the
whitespace character immediately following the name or number. If the last
token read stood for any other object, characters can be read starting from
the character immediately after the token.

The file returned is usually the default input file.

Errors - stackoverflow

print

string print -

writes string to the standard output file, enabling text to be sent to a host
computer. ‘

Errors - stackunderflow, typecheck

268

any = -

writes a text representation of the value of a number, boolean, string, name
or operator object to the standard output file, and ‘-nostringval-’ for any
other object.

Errors - stackunderflow

stack

- stack -

performs the same function as the = operator, but for each object on the
stack.

Errors - stackoverflow

any == -

writes a text representation of the value of an object to the standard output
file. Literal names are preceded by /. Strings, arrays and packed arrays are
shown in their entirety, enclosed within (),[] and {}. Type names of unprint-
able types are shown (see the type operator on page 256), and operator
names are shown as follows: --opname--.

Errors - stackunderflow

pstack

- pstack -

performs the same function as the == operator, but for each object on the
stack.

Errors - stackoverflow

prompt
- prompt -
prompts the user for the next statement (only in an interactive environment).

echo

boolean echo -

If boolean = true, characters are echoed from the standard input file to the
standard output file (in an interactive environment). If boolean = false, char-
acters are not echoed.

Errors - stackunderflow, typecheck

269

6.8.16 Virtual memory operators

save

- save save

saves the state of virtual memory, returning a save object, and pushes a copy
of the graphics state onto the graphics state stack.

Errors - limitcheck, stackoverflow

restore:

save restore -

restores the saved virtual memory state described by save and pops the
graphics state from the top of the graphics state stack. A save object may
only be restored once: save and any more recently created save objects are
discarded. If the operand, dictionary or execution stacks contain array, dic-
tionary, file, name, save or string objects newer than the save object being
restored, an invalidrestore error is executed.

Errors - invalidrestore, rangecheck, stackunderflow, typecheck

vmstatus

- vmstatus level used maximum

describes the state of Truelmage virtual memory. level is the current number
of saved VM states, used the number of bytes used so far, and maximum the
maximum number of bytes available.

Errors - stackoverflow

270

6.8.17 Miscellaneous operators

bind

proc bind proc

replaces the executable operator names in a procedure by their values. If a
name is not found, or its value is not an operator, no action is taken for that
name. For elements of proc that are procedures with unlimited access, bind
performs the same process on them, and then sets their access to read only.
bind is used to ensure that a procedure will execute the operator definitions
it was intended to, and to make it run faster.

Errors - typecheck

null

- null rul

pushes a null object onto the stack.
Errors - stackoverflow

usertime
- usertime int
returns the current value of a clock counter that counts in milliseconds.

Errors - stackoverflow

executive

- executive -

invokes the interactive executive, enabling the user to address the Truelmage
interpreter directly using a terminal program. executive makes use of the
% statementedit file to obtain commands from the user. If echo has been
turned on with the echo operator, commands are echoed to the user’s termi-
nal as the user enters them.

Errors - undefined

version

- version string

returns a string detailing the version of the Truelmage language and inter-
preter being used. :

Errors - stackoverflow

gsave

- gsave -

saves the current graphics state, pushing it onto the graphics state stack.
Errors - limitcheck

271

grestore

- grestore -

restores the graphics state saved with the most recent gsave command, pop-
ping it off the top of the graphics state stack. If no gsave has been executed,
or if the most recent gsave came before a save whose VM state has not yet
been restored, grestore restores the graphics state on top of the graphics
state stack without popping it.

grestoreall

- grestoreall -

pops graphics states off the graphics state stack until it reaches either the
bottommost graphic state, or a state saved by a save. This is then made the
current graphics state, but is not popped from the stack.

initgraphics
- initgraphics -
sets the following graphics state settings to their default values

CT™M default for printer line width 1 user unit
path empty line cap butt caps
position undefined line join mitered
clipping path | default for printer line dash solid
color black miter limit 10

setlinewidth

num setlinewidth -

sets the line width for the current graphics state to num. This determines the
thickness of lines generated by stroke. If scaling is unequal in the x- and y-
directions, a line’s thickness will vary according to its orientation. A line
width of O specifies the thinnest possible line.

Errors - stackunderflow, typecheck

currentlinewidth

- currentlinewidth num
returns the current line width in the current graphics state.
Errors - stackoverflow

272

setiinecap

int setlinecap -

sets the line cap type for the current graphics state. This determines the
shape of the end of open subpaths rendered by streke. 0 selects butt cap (the
stroke is cut off at the subpath’s endpoint), 1 selects round cap (projecting
semi-circular line ends), and 2 selects square cap (projecting squared line
ends).

0)

Errors - rangecheck, stackunderflow, typecheck

currentlinecap

- currentiinecap int

returns the current line cap setting in the current graphics state.
Errors - stackoverflow

273

setlinejoin

int setlinejoin -

sets the line join type for the current graphics state. This determines the
shape of the corners of paths rendered by stroke. O selects mitered join (the
outside edges of the converging lines are extended until they meet), 1 selects
round join (rounded circular line joins), and 2 selects bevel join (a straight-
line angular join).

If a mitered join length would exceed the miter limit, a beveled join is used
instead.

The line join type is only applied to consecutive segments of paths.

0-- Miter 1 - Round

2 - Bevel

Errors - rangecheck, stackunderflow, typecheck

currentlinejoin

- currentlinejoin int

returns the current line join setting in the current graphics state.
Errors - stackoverflow

274

setmiterlimit

num setmiterlimit -

sets the miter limit for the current graphics state. Miter length is the length
of the spike produced by two lines that join at an angle. Miter limit is the
maximum allowed ratio of miter length to line width. If mitered line joins
are selected, but the miter limit would be exceeded, a beveled join is used
instead. Setting the miter limit to 1 causes all mitered joins to be beveled

instead.

Line width Miter length

Line width Miter limit

If the miter length exceeds the miter
limit, the line join is beveled instead

Errors - rangecheck, stackunderflow, typecheck

currentmiterlimit

- currentmiterlimit num

returns the current miter limit in the current graphics state.
Errors - stackoverflow

275

setdash

array offset setdash -

sets the current line dash pattern for the current graphics state. The dash pat-
tern is specified by an array of numbers that specify alternating lengths of
line and spacing. A single number defines a dash pattern that alternates
equal lengths of line and spacing. The numbers in array should be non-neg-
ative and should not all be 0. It array is empty, lines are solid. Dash lengths
are in user units.

offset specifies an initial length of the pattern to be skipped when stroking of
a subpath cornmences.

The dash pattern is used cyclically; when stroke reaches the end of the pat-
tern it starts again from the beginning.

Each subpath is stroked separately; the dash pattern restarts from the begin-
ning (or from offset).

2 setlinewidth

[1] 0 setdash

100 200 -moveto 299 200 lineto
stroke

[10 10} 0 setdash

100 150 moveto 299 150 lineto
stroke

[10 5] 0 setdash

100 100 moveto 299 100 lineto
stroke

[20 10] 10 setdash

100 50 moveto 299 50 lineto
stroke

Errors - limitcheck, stackunderflow, typecheck

276

currentdash

- currentaash array offset

returns the current dash pattern in the current graphics state.
Errors - stackoverflow

setflat

num settlat -

sets the flatness setting for the current graphics state. Flatness is a measure
of how smooth or jerky rendered curved line segments are. All curved lines
are made up of sequences of small straight lines. The more straight lines that
are used, the smoother a curve is.

For small values of num, higher numbers of straight lines are used, and
hence curves appear smoother. However, this can consume large amounts of
virtual memory.

num can range from 0.2 to 100.

Errors - stackunderflow, typecheck

currentflat
- currentflat num
returns the current flamess setting in the current graphics state.

Errors - stackoverflow

setgray

num setgray -

sets the color parameter in the current graphics state to a specified gray
scale. Subsequent lines and shapes are stroked in the selected shade. num
ranges from O (black) to 1 (white). Values in between represent varying
shades of gray.

Errors - stackunderflow, typecheck, undefined.

currentgray

- currentgray num

returns the current gray value of the current color in the current graphics
state. If the current color is not black, the current color’s brightness compo-
nent is returned. '

Errors - stackoverflow

277

sethsbcolor

hue saturation brightness sethsbcolor -

sets the hue, saturation and brightness of the color parameter in the current
graphics state to the specified values. Each number can range from 0 to 1.
On a color device subsequent lines and shapes are stroked in the selected
color.

Errors - stackunderflow, typecheck, undefined.

currenthsbcolor

- currenthsbceolor hue saturation brightness

returns the hue, saturation and brightness components of the current color in
the current graphics state.

Errors - stackoverflow

setrgbcolor

red blue green setrgbcolor -

sets the red, green and blue components of the color parameter in the current
graphics state to the specified values. Numbers can range from O to 1. On a
color device subsequent lines and shapes are stroked in the selected color.
Errors - stackunderflow, typecheck, undefined.

currentrgbcolor

- currentrgbcolor red blue green

returns the red. blue and green components of the current color in the cur-
rent graphics state.

Errors - stackoverflow

setscreen

freq angle proc setscreen -

sets the current half-tone screen settings in the current graphics state. freg
specifies the number of half-tone cells per device-space inch, angle specifies
the angle of the screen to the device space coordinate system, and proc is a
procedure that defines the combination of white and black pixels for any
gray setting.

Errors - limitcheck, rangecheck, stackunderflow, typecheck

currentscreen
- currentscreen freq angle proc
returns the current halftone screen settings in the current graphics state.

Errors - stackoverflow

278

settransfer

proc settransfer -

sets the current transfer function for the current graphics state. proc is a pro-
cedure that takes a number in the range 0 to 1 as input and returns a number
in the same range. proc maps Truelmage gray levels set by setgray to
printer gray levels.

Errors - stackunderflow, typecheck

currenttransfer
- currenttransfer proc
returns the current transfer function in the current graphics state.

Errors - stackoverflow

279

6.8.18 Coordinate operators

matrix

- matrix matrix

pushes a 6-element identity matrix [1.0 0.0 0.0 1.0 0.0 0.0] onto the stack.
Errors - stackoverflow

initmatrix

- initmatrix -

sets the CTM to the default value for the printer. The effect of this is to
restore the default user space-to-device space mapping.

identmatrix

matrix identmatrix matrix

converts matrix to the identity matrix, [1.0 0.0 0.0 1.0 0.0 0.0], which maps
any point to itself.

Errors - rangecheck, stackunderflow, typecheck

defaultmatrix

matrix defauttmarrix matrix

converts matrix to the printer’s default transformation matrix.
Errors - rangecheck, stackunderflow, typecheck

currenunatrix

matrix currentratrix matrix

converts marrix to the current CTM.

Errors - rangecheck, stackunderflow, typecheck

setmatrix

matrix setmatrix -

makes marrix the current CTM. Normally the CTM will be modified using
the rotate, translate and scale operators instead.

Errors - rangecheck, stackunderflow, typecheck

280

translate

x y translate -

X y matrix translate matrix

If there is no matrix operand, translate modifies the CTM, repositioning the
origin of the user space coordinate system at (x,y) relative to its present
position. This is equivalent to multiplying the CTM by a matrix

100

010

xyl

If there is a matrix operand, translate sets its value to that of the matrix
shown above, and does not alter the CTM.

Errors - rangecheck, stackunderflow, typecheck

scale

X y scale -

X y matrix scale matrix

If there is no matrix operand, scale modifies the CTM, scaling the user
space coordinate system units by x and y relative to their current size. The
user space origin and rotation are not changed. This is equivalent to multi-
plying the CTM by a matrix

x00

0y0

001

If there is a matrix operand, scale sets its value to that of the matrix shown
above, and does not alter the CTM.

Errors - stackunderflow, typecheck

rotate

angle rotate -

angle matrix rotate matrix

If there is no matrix operand, rotate modifies the CTM, rotating the user
space coordinate system counterclockwise by angle degrees. The user space
origin and the size of its units are not changed. This is equivalent to multi-
plying the CTM by a matrix

cos(angle) sin(angle) O

—sin(angle) cos(angle) 0

001

If there is a matrix operand, rotate sets its value to that of the matrix shown
above, and does not alter the CTM.

Errors - stackunderflow, typecheck

concat

matrix concat -

modifies the CTM by multiplying it by matrix.
Errors - stackunderflow, typecheck

281

concatmatrix

matrix, matrix, matrixq concatmatrix matrix,

sets matrix; to the value obtained by multiplying matrix, by matrix;.
Errors - stackunderflow, typecheck

transform

X1 yq transform x, y,

X4 yq matrix transform x, y,

If there:is no matrix operand, transform returns the current device space
coordinates of the user space point (x;,y,) according to the current CTM. If
matrix is supplied, transform transforms the point using matrix instead.
Errors - stackunderfiow, typecheck

dtransform

dx, dy, dtransform dx, dy,

dx, dy4 matrix dtransform dx, dy,

If there is no matrix operand, dtransform returns the device space equiva-
lent of the user space distance vector (dx;, dy,), transforming it by the cur-
rent CTM. If matrix is supplied, dtransform transforms the distance vector
using matrix instead.

Errors - stackunderflow, typecheck

itransform

Xy yy itransform x, y»

X4 Y1 matrix itransform x, y,

If there is no matrix operand, itransform returns the current user space
coordinates of the device space point (x;,y,), transforming it by the inverse
of the current CTM. If matrix is supplied, itransform transforms the point
using the inverse of matrix instead.

Errors - stackunderflow, typecheck, undefinedresult

idtransform

dx4 dy, idtransform dx, dy,

dx, dy; matrix idtransform dx, dy,

If there is no matrix operand, idtransform returns the user space equivalent
of the device space distance vector (dx;, dy,), transforming it by the inverse
of the current CTM. If matrix is supplied, idtransform transforms the dis-
tance vector using the inverse of matrix instead.

Errors - stackunderflow, typecheck, undefinedresult

invertmatrix

matrix, matrix , invertmatrix matrix,

sets matrix; to the inverse of matrix;.

Errors - stackunderflow, typecheck, undefinedresult

282

6.8.19 Device set-up operators

showpage

- showpage -

causes the current page to be printed out, and then performs erasepage and
initgraphics to prepare the next page. showpage looks up the name #copies
in the dictionary stack, and prints the number of copies specified.

copypage

- copypage -

causes one copy of the current page to be printed out. copypage is intended
primarily for debugging use.

framedevice

matrix width height proc framedevice -

installs a frame buffer as raster memory for an output device. The frame
buffer is 8 x width pixels wide and height pixels high. matrix is made the
current CTM. proc is a procedure to be executed by showpage and copy-
page to transmit the contents of the frame buffer to the device.

Errors - stackunderflow, typecheck

nulldevice

- nulldevice -

makes the “null device” the current output device. Stroking and painting oper-
ators do not mark the current page. showpage and copypage have no effect.

283

6.8.20 LS-5TT-specific operators

Operators marked with an asterisk (*) are defined in the statusdict dictio-
nary. To use these operators, precede them with the Truelmage program
statement:

statusdict begin
This will enable your program to use them.

setdojamrecovery *

bool setdojamrecovery -

turns jam recovery on (true) or off (false). If jam recovery is on, pages that
get jammed will be reprinted when the jam has been cleared; if off (the fac-
tory default), the print job is abandoned. Jam recovery may reduce through-
put.

Errors - stackunderflow, typecheck

dojamrecovery *

- dojamrecovery bool

returns the jam recovery setting: on (true) or off (false).
Errors - stackoverflow, typecheck

setdorep *

bool setdorep -

turns resolution enhancement (300x600 dots per inch) on (true) or off
(false). The factory default setting is off.

Errors - stackunderflow, typecheck

dorep *
- dorep bool
returns the resolution enhancement setting: on (true) or off (false).

Errors - stackoverflow, typecheck

284

settray *
traynum settray -
selects the tray from which to feed paper. Valid values of traynum are as fol-

lows:

traynum | tray

0 front tray

1 cassette

2 auto selection
3 lower cassette

Errors - stackunderflow, typecheck

papertray *

- papertray traynum

returns an integer whose value indicates the current tray selection. Values
for traynum are as for settray above.

Errors - stackoverflow, typecheck

traysup *

traynum traysup bool

indicates whether a particular tray is available (true) or not (false). Values
for traynum are as for settray above.

Errors - stackunderflow, typecheck

285

ppapersize *

traynum ppapersize papersize

indicates the size of paper in the specified tray. Values for traynum are as for
settray above. Values for papersize are as follows:

papersize size papersize size

0 . Letter 5 Monarch
1 Legal 6 Com-10
2 A4 7 DL

3 Executive 8 (O8]

4 BS5

Errors - stackunderflow, typecheck

setpapertray *

traynum setpapertray -

selects the tray from which to feed paper, and sets the clipping path (image-
able area) according to the size of the paper in the selected tray. Values for
traynum are as for settray above.

Errors - stackunderflow, typecheck

findtray *

papersize findtray

seraches for a tray containing paper of size papersize. If one is found, the
tray is selected as the current tray and the imageable area (clipping path) is
set according to the paper size specified by papersize. Values for papersize
are as for ppapersize above.

Errors - stackunderflow, typecheck

executivepage

- executivepage -

sets a page size of 7.25" by 10.50" and an imageable area (clipping path) of
6.72" by 10.00" centered on the page.

286

com10envelope

- comi0envelope -

sets a page size of 4.125" by 9.50" and an imageable area (clipping path) of
3.63" by 9.00" centered on the page.

monarcenvelope

- monarcenvelope -

sets a page size of 3.875" by 7.50" and an imageable area (clipping path) of
341" by 7.00" centered on the page.

cSenvelope

- cSenvelope -

sets a page size of 6.38" by 9.01" and an imageable area (clipping path) of
5.87" by 8.51" centered on the page.

dlenvelope

- dlenvelope -

sets a page size of 110mm by 220mm and an imageable area (clipping path)
of 97.54mm by 207.3mm centered on the page.

setemulation
emulation setemulation -
switches the printer to the selected emulation. Valid values of emulation are

as follows

Value Emulation

0 HP LaserJet 111

5 Truelmage

Other values are ignored.

lettertray

- lettertray - ‘

causes the printer to search for a tray containing Letter-sized paper. If one is
found, page size is set to Letter, and the tray is selected as the current tray. If
no tray containing Letter paper is found, a rangecheck error is executed.
Errors - rangecheck

287

legaltray

- legaltray -

causes the printer to search for a tray containing Legal-sized paper. If one is
found, page size is set to Legal, and the tray is selected as the current tray. If
no tray containing Legal paper is found, a rangecheck error is executed.
Errors - rangecheck

adtray
- adtray -
causes the printer to search for a tray containing A4-sized paper. If one is

found, page size is set to A4, and the tray is selected as the current tray. If no
tray containing A4 paper is found, a rangecheck error is executed.
Errors - rangecheck

executivetray

- executivetray -

causes the printer to search for a tray containing Executive-sized paper. If
one is found, page size is set to executive, and the tray is selected as the cur-
rent tray. If no tray containing Executive paper is found, a rangecheck error
is executed.

Errors - rangecheck

bStray

- b5tray -

causes the printer to search for a tray containing B5-sized paper. If one is
found, page size is set to B5, and the tray is selected as the current tray. If no
tray containing B5 paper is found, a rangecheck error is executed.

Errors - rangecheck

monarcenvelopetray

- monarcenvelopetray -

causes the printer to search for a tray containing Monarch-sized envelopes.
If one is found, page size is set to monarch, and the tray is selected as the
current tray. If no tray containing Monarch envelopes is found, a
rangecheck error is executed.

Errors - rangecheck

288

comi0envelopetray

- com10envelopetray -

causes the printer to search for a tray containing Com-10-sized envelopes. If
one is found, page size is set to Com-10, and the tray is selected as the cur-
rent tray. If no tray containing Com-10 envelopes is found, a rangecheck
error is executed.

Errors - rangecheck

dlenvelopetray

- dienvelopetray -

causes the printer to search for a tray containing DL-sized envelopes. If one
is found, page size is set to DL, and the tray is selected as the current tray. If
no tray containing DL envelopes is found, a rangecheck error is executed.
Errors - rangecheck

c5envelopetray
- cSenvelopetray -
causes the printer to search for a tray containing C5-sized envelopes. If one

is found, page size is set to C5, and the tray is selected as the current tray. If
no tray containing C5 envelopes is found, a rangecheck error is executed.
Errors - rangecheck

289

6.8.21 Errors
dictfull

dictionary is full

dictstackoverflow
dictionary stack is full

dictstackunderflow
dictionary stack is empty

execstackoverflow
execution stack is full

handleerror
a procedure that reports information about errors

interrupt
external interrupt detected

invalidaccess
object does not have requested access attribute

invalidexit
exit is not within a loop construct

invalidfileaccess
file operand access string is not acceptable

invalidfont
invalid font name or font dictionary encountered

invalidrestore
improper restore attempted

ioerror
input/output error

limitcheck
some implementation-specific limit exceeded

nocurrentpoint
current coordinate point has not been set (using moveto or rmoveto)

rangecheck
operand value exceeds implementation limits

290

stackoverflow
Operand stack is full

stackunderflow
Operand stack is empty

syntaxerror
Syntax error in Truelmage program code

timeout
time limit exceeded

typecheck
operand is of the wrong type for the operator

undefined
name not found

undefinedfilename
file not found

undefinedresult
value is too great or too small to be represented, or result is meaningless

unmatchedmark
operator cannot find mark in operand stack

unregistered
internal error

VMerror
Virtual memory is full

291

MEMO

292

CHAPTER

Technical
supplement

This section provides summary lists of all commands available in the PCLS,
GL2 and Truelmage languages, character code tables for all symbol sets
available in HP LaserJet III mode, and samples of all internal fonts.

7.1 Command summary

7.1.1 Printer Control Language (PCL) commands

Command Function Page
<BS> Backspace 68
<HT> Horizontal tab 68
<LF> Line feed 67
<FF> Form feed 68
<CR> Carriage return 67
<S0> Select secondary font 80
<Sl> Select primary font 80
<SP> Space 67
<ESC>&anC Horizontal cursor position (columns) 69
<ESC> & anH Horizontal cursor position (decipoints) 69
<ESC>&anlL Set left margin 63
<ESC>&anM Set right margin 64
<ESC>&anP Print direction 72
<ESC>&anR Vertical cursor position (rows) 70
<ESC>&anV Vertical cursor position (decipoints) 70
<ESC>&d @ Turn underlining off 88
<ESC>&dnD Turn underlining on 88
<ESC>&fnS Push/pop cursor-position 71
<ESC> & fnX Macro control 114
<ESC> & fnY Macro ID 114
<ESC>&knG Line termination 73
<ESC> &k nH Horizontal motion index 62
<ESC> & 7/nA Page size 56
<ESC>&7/nC Vertical motion index 62
<ESC>&/nD Set line spacing 63
<ESC> & /nE Top margin 65
<ESC>&7/nF Text length 66

293

Command

<ESC>&7/nH
<ESC>&7/nL
<ESC>&7n0
<ESC> & /nP
<ESC>&7/nU
<ESC> & 7/nX

<ESC>&7/nZ -

Function

Paper source
Perforation skip

Logical page orientation
Page length

Left offset registration
Select number of copies
Top offset registration

<ESC> & p n X <character data>

<ESC>&snC
<ESC>(3 @
<ESC> (n
<ESC> (n
<ESC> (s n B
<ESC> (s nH
<ESC> (s nP
<ESC>(snS
<ESC>(snT
<ESC> (s nV
<ESC> (

<ESC>) 3

<ESC>)n

<ESC>) n

<ESC>)snB
<ESC>)snH
<ESC>)snP
<ESC>)snS
<ESC>)snT
<ESC>)snV
<ESC>)

<ESC>*bnM

Transparent print data

End of line wrap

Set primary font to default values
Select primary font symbol set
Select primary font by ID number
Select primary font stroke weight
Set primary font pitch

Select primary font spacing type
Select primary font style

Select primary font typeface

Set primary font point size

s n W <descripter and data>

Send character descripter and data
Set secondary font to default values
Select secondary font symbol set
Select secondary font by ID number
Select secondary font stroke weight
Set secondary font pitch

Select secondary font spacing type
Select secondary font style

Select secondary font typeface

Set secondary font point size

s n W<descripter>

Send font descripter
Set compression mode

<ESC> * b n W <data>

<ESC>*bnyY
<ESC>*cnA
<ESC>*cnB
<ESC>*cnD
<ESC>*cnkE
<ESC>*cnF
<ESC>*cnG
<ESC>*cnH
<ESC>*cnP
<ESC>*cnV
<ESC>*pnX

Transfer raster data

Set raster y-offset

Set rectangle width in dots

Set rectangle height in dots

Font ID

Send character code

Font control

Set area fill identity

Set rectangle width in decipoints
Draw filled rectangle

Set rectangle height in decipoints
Horizontal cursor position (dots)

Page
53
66
60
57
58
52
59

88
73
80
81
80
86
83
82
85
87
84

98
80
82
81
87
83
82
85
88
84

92
109

111
109
105
106
90
98
90
104
106
106
106
69

294

Command
<ESC>*pnY
<ESC>"rB
<ESC>"rnA
<ESC>*rnF
<ESC>*rnS
<ESC>*rnT
<ESC>*tnR
<ESC>*vnN
<ESC>*vnO
<ESC>*vnT
<ESC>9
<ESC> =
<ESC> E
<ESC>Y
<ESC>Z
<ESC>[Cn
<ESC>[En
<ESC>[On
<ESC>[Sn
<ESC> z

Function

Vertical cursor position (dots)
End raster transfer

Start raster transfer

Set raster image orientation
Set raster area width

Set raster area height

Set raster resolution

Set source transparency
Set pattern transparency
Set pattern type

Clear horizontal margins
Half line feed

Reset

Display functions on
Display functions off
Select feeder

Change emulation
Select orientation

Select paper size

Self test

Page
70
111
111
108
108
108
107
103
103
105
64
71
52
74
74
53
54
61
55
74

295

7.1.2 GL2 commands

Command
<ESC> % nA
<ESC>% nB
<ESC>*cO0T
<ESC>*cnK
<ESC>*cnL
<ESC>*cnX
<ESC>*cnY
AA

AC

AD

AR

AT

CF

Cl

CP

DF

Dl

DR

DT

DV

EA

EP

ER

ES

EW

Fi

FN

FP

FT

IN

P

IR

W

LA

LB

LO

LT

PA

PD

PE

PG

PM

PR

PU

Function
Enter PCL mode
Enter GL2 mode

Set picture frame ancher point

Specify horizontal plot size
Specify vertical plot size

Set picture frame horizontal size

Set picture frame vertical size
Draw absolute arc
Anchor corner

Define alternate font
Draw relative arc

Draw absolute three point arc
Character fill mode
Draw circle

Character plot

Default values

Absolute direction
Relative direction
Define label terminator
Define variable text path
Edge absolute rectangle
Edge polygon

Edge relative rectangle
Extra space

Edge wedge

Select primary font
Select secondary font
Fill polygon

Fill type

Initialize

Input scaling points
Input relative scaling points
Input window

Line attributes

Define label

Label origin

Line type

Plot absolute

Pen down

Polyline encoded
Advance full page
Polygon mode

Plot relative

Pen up

Page

122
122
121
122
121
121
121
146
157
175
148
147
185
145
184
129
181
182
179
183
151
152
151
191
152
176
177
155
158
128
130
131
137
160
178
179
162
140
139
142
138
149
141
139

296

Command
PW
RA
RF
RO
RP
RR
RT
SA
SB
sC
SD
Sl
SL
SM
SP
SR
SS
SV
TD
TR
UL
WG
wu

Function

Pen width

Fill absolute rectangle
Raster fill definition
Rotate coordinate system
Replot

Fill relative rectangle
Draw relative three point arc
Select alternate font
Scalable or bitmap fonts
Scale

Define standard font

Set absolute character size
Set character slant
Symbol mode

Select pen

Set relative character size
Select standard font
Screened vectors
Transparent data
Transparency mode
User-defined line type
Fill wedge

Select pen width unit

Page
164
154
164
136
138
154
148
176
190
132
172
186
189
166
167
187
176
167
191
168
168
156
170

297

7.1.3 Truelmage operators

Operator

—

anchorseach
and

arc

arcn

arcto

array

ashow

astore

atan
awidthshow
b5tray

begin

bind

bitshift
bytesavailable
cbenvelope
c5envelopetray
cachestatus
ceiling
charpath
clear
cleartomark
clip

clippath
closefile
closepath
com10envelope
com1iQenvelopetray
concat
concatmatrix
copy

copy

copy

copy

copy

Function

Start array construction

End array construction

Write text representation of any to standard output file
Write syntactic representation of any to standard output file
Look for A4 size paper tray

Absolute value of numi

numi plus num:

Push all elements of array on stack

Push all elements of packedarray on stack

Determine if seek is initial substring of string

Logical | bitwise and

Append counterclockwise arc

Append clockwise arc

Append tangent arc

Create array of length int

Add (x, v) to width of each character while showing string
Pop elements from stack into array

Arctangent of numi/num: in degrees

Combine effects of ashow and widthshow

Look for BS size paper tray

Push dict on dictionary stack

Replace operator names in proc by operators

Bitwise shift to int; (positive is left)

Number of bytes available to read

Establish imaging area to C5 size envelope

Look for C5 size envelope tray

Return font cache status and parameters

Ceiling of num;

Append character outline to current path

Discard all elements

Discard elements down through mark

Clip using non-zero winding number rule

Set current path to clipping path

Close file ‘

Connect subpath back to its starting point

Establish imaging area to COM-10 size envelope
Look for COM-10 size envelope tray

Replace CTM by matrix x CTM

Fill matrixs with matrixi X matrix:z

Duplicate top n elements

Copy elements of string: to initial substring of string2
Copy elements of array; to initial subarray of arrayz
Copy elements of packedarray: to initial subarray of array:
Copy contents of dicti to dictz

Page
245
245
269
269
288
225
225
246
248
242
229
232
233
233
245
261
246
226
261
288
249
271
230
267
287
289
263
226
235
224
224
237
235
265
235
287
289
281
282
223
242
246
248
251

298

Operator
copypage

cos

count
countdictstack
countexecstack
counttomark

currentcacheparams

currentdash
currentdict
currentfile
currentflat
currentfont
currentgray
currenthsbcolor
currentlinecap
currentlinejoin
currentlinewidth
currentmatrix
currentmiterlimit
currentpacking
currentpoint
currentrgbcolor
currentscreen
currenttransfer
curveto

cvi

cvlit

cvn

cvr

cvs

cvrs

cvX

def
defaultmatrix
definefont

dict

dictfull

dictstack
dictstackoverflow

dictstackunderflow

div

dlenvelope
dienvelopetray
dojamrecovery
dorep
dtransform

Function

Transmit current page

Cosine of angle (degrees)

Count elements on stack

Count elements on dictionary stack

Count elements on exec stack

Count elements down to mark

Return current font cache parameters
Return current dash pattern

Push current dictionary on orerand stack
Return file currently being executed

Return current flatness

Return current font dictionary

Return current color as gray value

Return current color as hue, saturation, brightness
Return current line cap

Return current line join

Return current line width

Fill matrix with CTM

Return current miter limit

Return array packing mode

Return current point coordinate

Return current color as red, green, blue
Return current gray halftone screen

Return current gray transfer function
Append Bézier cubic sction

Convert to integer

Make object be literal

Convert to name

Convert to real

Convert to string

Convert to string with radix

Make object be executable

Associate key and value in current dictionary
Fill matrix with device default matrix
Register font as a font dictionary

Create dictionary with capacity for inf elements
No more room in dictionary

Copy dictionary stack into array

Too many begins

Too many ends

numi divided by num:

Establish imaging area to DL size envelope
Look for DL size envelope tray

Indicate whether jam recovery is on or off
Indicate whether REP is on or off
Transform distance (dxi, dy?) by CTM or matrix

Page
283
227
224
252
254
224
264
277
252
268
277
260
277
278
273
274
272
280
275
247
231
278
278
279
234
258
256
258
258
259
258
256
249
280
260
249
290
252
290
290
225
287
289
284
284
282

299

Operator
dup

echo

end
eoclip
eofill

eq
erasepage
errordict |
exch
exec
executive
execstack

execstackoverflow

executeonly
executivepage
executivetray
exit

exp

false

file

fill

findfont
findtray
flattenpath
floor

flush

flushfile
FontDirectory
for

forall

forall

forall

forall
framedevice
ge

get

get

get

get
getinterval
getinterval
getinterval
grestore
grestoreall
gsave

Function

Duplicate top element

Turn on/off echoing

Pop dictionary stack

Clip using even-odd inside rule

Fill using even-odd rule

Test equal

Paint current page white

Error handler dictionary

Exchange top two elements

Execute arbitrary object

Invoke interactive executive

Copy exec stack into array

Exec nesting too deep

Reduce access to execute-only

Establish imaging area to executive size
Look for Executive size paper tray

Exit innermost active loop

Raise num to exponent power

Push boolean value false

Open file identified by string: with access stringz
Fill current path with current color
Return font dictionary identified by key
Find the specific paper tray

Convert curves to sequences of straight lines
Floor of numi

Send buffered data to standard output file
Send buffered data or read to EOF
Dictionary of font dictionaries

Execute proc with values form start by steps of increment to
finish

Execute proc for each element of string
Execute proc for each element of array
Execute proc for each element of packedarray
Execute proc for each element of dict

Install frame buffer device

Test greater or equal

Get string element indexed by index

Get array element indexed by index

Get packedarray element indexed by index
Get value associated with key in dict
Substring of string at index tor count elements

Subarray of array starting at index for count elements
Subarray of packedarray starting at index for count elements

Pop graphics state
Pop to bottommost graphics state
Push graphics state

228,

228,

Page
223
269
249
237
238
243
238
251
223
253
271
254
290
257
286
288
254
227
229
265
238
260
286
235
226
267
267
262
253

242
246
248
251
283
244
241
245
247
250
241
245
248
272
272
271

300

Operator

gt
handleerror
identmatrix
idiv
idtransform
if

ifelse
image
imagemask
index
initclip
initgraphics
initmatrix
interrupt
invalidaccess
invalidexit
invalidfileaccess
invalidfont
invalidrestore
invertmatrix
ioerror
itransform
known
kshow

le

legaltray
length
length
length
length
lettertray
limitcheck
lineto

In

load

log

loop

it

makefont
mark
matrix
maxlength
mod
monarcenvelope

monarcenvelopetray

moveto

Function

Test greater than

Called to report error information

Fill matrix with identity transform

Integer divide

Inverse transform distance (dx/, dyr) by CTM or matrix
Execute proc if bool is true

Execute proci if bool is true, proc? if bool is false
Paint monochrome sampled image

Paint current color through mask

Duplicate arbitrary element

Set clipping path to device default

Reset graphics state parameters

Set CTM to device default

External interrupt request

Attempt to violate access attribute

exit not in loop

Unacceptable access string

Invalid font name or dictionary

Improper restore

Fill matrix2 with inverse of matrixi
Input/output error occurred

Inverse transform (x7, y7) by CTM or matrix
Test whether key is in dict

Execute proc between characters shown from string
Test less or equal

Look for Legal size paper tray

Number of elements in string

Number of elements in array

Number of elements in packedarray
Number of key-value pairs in dict

Look for Letter size paper tray
Implementation limit exceeded

Append straight line to (x, y)

Natural logarithm (base ¢)

Search dictionary stack for key and return associated value

Logarithm (base 10)

Execute proc an.indefinite number of times
Test less than

Transform font: by matrix to produce new foni:z
Push mark on stack

Create identity matrix

Current capacity of dict

intr mod int2

Establish imaging area to Monarch size envelope
Look for Monarch size envelope tray

set current point to (x, y)

Page

228,

228,

228,

244
290
280
225
282
253
253
239
240
224
237
272
280
290
290
290
290
290
290
282
290
282
250
262
244
288
241
245
247
249
287
290
231
227
250
227
253
244
260
224
280
249
225
287
288
231

301

Operator
mul

ne

neg
newpath
noaccess
nocurrentpoint
not

null
nulldevice
or
packedarray
papertray
pathbbox
pathforall
pop '
ppapersize
print
prompt
pstack

put

put

put
putinterval
putinterval
quit

rand
rangecheck
rcheck
rcurveto
read
readhexstring
readline
readonly
readstring
repeat
resetfile
restore
reversepath
rlineto
rmoveto

roll

rotate
round
rrand

run

save

Function

numi times nums2

Test not equal

Negative of numi

Initialize current path to be empty

Disallow any access

Current point is undefined

Logical | bitwise not

Push null on operand stack

Install no-output device

Logical | bitwise inclusive or

Create packed array consisting of the specified n elements
Return int indicating the current tray
Return bounding box of current path
Enumerate current path

Discard top element

Ask the paper size of the specific paper tray
Write string to standard output file
Executed when ready for interactive input
Print stack non-destructively using ==

Put int into string at index

Put any into array at index

Associate key with value in dict

Replace substring of string starting at index by string:2
Replace subarray of array starting at index by subarray
Terminate interpreter

Generate pseudo-random integer

Operand out of bounds

Test read access

Relative curveto

Read one character from file

Read hex from file into string

Read line from file into string

Reduce access to read-only

Read string from file

Execute proc int times

Discard buffered characters

Restore VM snapshot

Reverse direction of current path

Relative lineto

Relative moveto

Roll n elements up j times

Rotate user space or define rotation by angle degrees
Round numi to nearest integer

Return random number seed

Execute contents of named file

Create VM snapshot

Page
225
228,243
226
231
257
290
229
271
283
229
247
285
236
236
223
286
268
269
269
241
245
250
241
246
255
227
290
257
234
265
266
266
257
266
253
268
270
235
232
231
224
281
226
227
268
270

302

Operator

scale

scalefont
search
setcachedevice
setcachelimit
setcacheparams
setcharwidth
setdash
setdojamrecovery
setdorep
setemulation
setflat

setfont

setgray
sethsbcolor
setlinecap
setlinejoin
setlinewidth
setmatrix
setmiterlimit
setpacking
setpapertray
setrgbcolor
setscreen
settransfer
settray

show
showpage

sin

sqrt

srand

stack
stackoverflow
stackunderflow
StandardEncoding
start

status

stop

stopped

store

string
stringwidth
stroke
strokepath

sub
syntaxerror

Function

Scale user space or define scaling by xand y
Scale font1 by scale to produce new foniz
Search for seek in string

Declare cached character metrics

Set maximum bytes in cached character
Change font cache parameters

Declare uncached character metrics

Set dash pattern for stroking

Turn jam recovery on/off

Turn REP on/off

Switch the emulation

Set flatness tolerance

Set font dictionary in graphics state

Set color to specified gray value

Set color to specified hue, saturation, brightness
Set shape of line ends for stroke

Set shape of corners for stroke

Set line width

Replace CTM by matrix

Set miter length limit

Set array packing mode

Establish which input tray and set the imaging area
Set color to specified red, green, blue
Set gray halftone screen

Set gray transfer function

Set tray which paper will be fed

Paint characters of string on page
Transmit and reset current page

Sine of angle (degrees).

Square root of num

Set random number seed

Print stack non-destructively using =
Operand stack overflow

Operand stack underflow

Standard font encoding vector
Executed at interpreter startup

Return status of file

Terminate stopped context

Establish context for catching stop
Replace topmost definition of key
Create string of length int

Width of string in current font

Draw line along current path

Compute outline of stroked path

A Minus num:

Language syntax error

Page
281
260
242
263
263
264
263
276
284
284
287
277
260
277
278
273
274
272
280
275
247
286
278
278
279
285
261
283
227
226
227
269
291
291
262
255
268
254
254
250
241
262
238
235
225
291

303

Operator
systemdict
timeout
token
token
transform
translate
traysup
true
truncate
type
typecheck
undefined

undefinedfilename

undefinedresult

unmatchedmark

unregistered
userdict
usertime
version
VMerror
vmstatus
wcheck
where
widthshow
write
writehexstring
writestring
xcheck

xor

Function

System dictionary

Time limit exceeded

Read token from start of string

Read token from file

Transform (x7, yr) by CTM or matrix

Translate user space or define translation by (x, y)
Check whether the specified paper tray is supplied
Push boolean value true

Remove fractional part of num;

Return name identifying the type of any
Operand of wrong type

Name not known

File not found

Over/underflow or meaningless result

Expected mark not on stack

Internal error

Writable dictionary in local VM

Return execution time in milliseconds
Interpreter version

VM exhausted

Report VM status

Test write access

Find dictionary in which key is defined

Add (x, y) to width of char while showing string
Write one character to file

Write string to file as hex

Write string to file

Test executable attribute

Logical | bitwise exclusive or

Page
252
291
243
267
282
281
285
229
226
256
291
291
291
291
291
291
252
271
271
291
270
257
251
261
265
266
266
256
229

304

7.2 Character set tables

ISO 60: Norwegian

125

[}
a

126

n
[94] [170

-~

: J Z] z
rs8l " (7] “ [=0] 2 [oe] ° 122

"7 2 "

-

7 0] o
[63] ~ [79] — [95] 111§127

2_'B_{R_{b__Ir
[34] [50] [es] [82] [98] [114

5 E U e u
[37] [53] [e9] [85] [101 117

Q
i

2]

*

+ ; K y:d k &
[&3] ' [s9] [75] [91] [wo7] [123

(5]

[18]

[21]

8 H X h X
2 (W [56] [72] " [88] [104] = [120
9 I Y i
25) [&1] " [57 73 [89 105 Y 121

[26|

<ESC>

[27]

< L 1
[28] ' [4] [e0 [7(5[_9? w08 © [i7a

["29]

] [@ & [

=/ &

ol el 5 Ol el T el el P

|
1 = = s Yl P e A

[2]

I s il B 5 B s e - D e R

= e s el el el e

[5]

& |6 _|F__{v _1f__1v
[6] [22] [38 [54 [70] [86] [102] [118

r 17 _1GcG __1W w
5 = [567 (a2 ol " [

<BS>

[g

<HT>

[l

<LF>

[10]

[11]

<FF>

[12]

<CR>

[3]

<S0>

[T4]

<Si>

[15]

8

9

A

C

D

E

F

305

Roman Extension

i
[65] [81]

é

6

[° &

o)

7> =
@ [

a

e

o

]

'

o M ~ 0 N~ [e} [+ 3 o — o Ny ~3 [Ya) 0 M~
— — -— - — Ll -— o o o o o~ o [4Y] o
- - = - - = - - - - - - - - -
flah e . | o\ | A | AN @i ol M] 2 +
~
_W _H _W 8l 3 (8] [B] [8] {8 8
= = = = = = = =
(= [T=H {ts] Le) Ay Vo] O @) W0 o] i)
o o [Ta) 0 o o
o S v 15 O Nea) ¢
~r
2 2 ® *
«g
K
~r

S rr
(&l 7 (95 Y [

[32]
[33]

A

= ¥ =]

° ia __1Z2 _ 1D
(3 (=] (e el) - s

E

n_ju_|&
[39] [551 [71] [&7

(@] '[9
[« ¢ 57
[z 53

-

~

~

£ u U S
[43] [59] [7s] [91] [107
¥ a
44 [60 76

& i o
= &l 17 sl

U

[1e]
[17]

[19]

I
[23]

[
[5]
[2¢]

<ESC>

[7"

[28]
[29]

3 ° e f e e el e

£
[31] 47¢

[o
[1]

2

[3]

Cd ol S Sl
g I A s

el) i

[7]

<BS>

[g]

<HT>

[

<LF>

[10]

[11]

<FF>

[12]

<CR>

[13]

<S0>

[

<SI>

[15]

8

9

A

C

D

E

F

306

ISO 25: French

116

t

118

v

119

w

120

X

122

A

123

é

124

a

125

[126]

«Q

FBZP112

~

-~

n
[94] [110

M

a

M
el M7 S 5 "

-

? 5 © 551 - 58] © [l *

2_1B_|R_|b__|r
[34] ~[50] [e6] [82] [98] [114

5 E U e u
[371 " [53] [e9] [&5] [101 117

°
)

: J Z]
72 el 7l 2 o] ° o
+ H K ° k
%3] ' [59] [75] [[wo7

*

(3]

[18]

[21]

W(I—EBWHITZXF&?hW«

9 I Y i
= @ = A e el Y e

[26]

<ESC>

[27]

, < L 1l
28| ' 7l [eo] 78] ° [%2] ~ [1os

[29]

55 [@| & [7

=/ @

ol [76 [[@

|
o DO e I 3 el o o3 o B I

[2]

s Il A) e 2 s R o B
4] IW$!_3?4WDF§TWC1100

[s

& 6 F v f
[l [z2] [38 [54 [70] [8e] [102
4 7 G W
71 [23] [39] [55 [7 ls7g103

<BS>

[8]

<HT>

[9]

<LF>

[19]
[1]

<FF>

2]

<CR>

[13]

<S0>

[74]

<S>

(5]

8

9

A

C

D

E

F

307

HP German

n B
[94 110 126

-~

J Z j z
[58] [74] [_90—3106 122

M U m i
[61] " [77] [93] [109 125

(& 7

>

-

i 0] (o]
[63] " [79]l —[95] [111 & 127

ENERER NI

5 E U e u
[37] " [53] [e9o] [85] [101 117

[}
°

7 G W w
[39] [551 [7] [_§7g103 119

4

b

*

; K A k i
[43] ' [59] [75] [91] [ro7] ~ [123

+

]
" [4]

=

£ 13 __Jc_Js_Jc s
[19] [35] [51] [er] [83] [99] [115

[21]

[3]

8 H X h
2 el & rsel Bl X el el X

= @ A sl sl Y

[26]

<ESC>

[27]

< L 0 1 o)
[28] " [a4| [eo] [76] [92] ~[108] ~[124

[29]
[30]

= @

5 el 3 T el D el (w6 P e

[1]

o s e e R R

[3]

4 D T d t
[4] m$[—§§ [52] ~[e8] ~[84] [100] [116

[9]

& 16 __JF___ 1V __1f__Iv
[6l [22] [38] [54] [70] [8s [102] [118

[7

<BS>

[

<HT>

[

<LF>

_ [0

[

<FF>

[12]

<CR>

[13]

<S0>

[14]

<SI>

[15]

8

9

A

C

D

E

F

308

ISO 15: Italian

116

t

118

v

119

w

120

X

122

4

123

a

124

o)

126

1

108

1

n
[9s] [110

~

M é m e
61l [771 [93] [109] [125

-~

< 6] o
[63] [79] —[o5] [111 §127

2 _|B_|R_|b__Jr
[34] ~ [50] [es] [82] [98] [114

5 E U e u
371 " [53] [eo] [&s| [101 117

o
%

7 G W
ENENNENE

14

: J Z i
[22] [58] [I90J 106
+ o4 dx_J° _Jx
23] ' [sol [[91] [o7

*

@

18]

[21]

[23]

ol ® e M e

9 I Y i
A e s M N E M

[2]

<ESC>

[27

(8 [e 7[5

[29]

ol " [@] el [

E M

ol [16 |320|48§164P80u|%p112
|
B I17'|331|49A65Q81a|—9_7q113

[2]

I s il) e s s D e
R M s M - R T

[s

& |6 _|F__1Vv__|f
[6| [22| [38 [54 [70] [86] [102

[7

<BS>

[8

<HT>

[9]

<LF>

(0]
]

<FF>

[12]

<CR>

[13)

<S0>

[

<SI>

[15)

8

9

A

C

D

E

F

309

JIS ASCII

126

-~

n
[T94] " [110

e N e M el ! s

& 7

>

(0] o
[63] [79] —[95] [& 127

?

I_E;I?K[Ts[ITKHW{W

+

[
" [48

8 H X h X
ol © sl el X el P edl ¥ e

= a5 A Y sl el Y

* 1 (I3 _1Z_1j 1z
[26] [42] [58] [7al [90] ~ [106] [122

<ESC>

< L ¥ 1
[28| ' [4| [80] [76] [92] 108|124

[27]

[29]
[30]

G/ @l

o Gl 52 @l el T el el P

|
[|17'|331|49A|65Q181a|97q113
" 2 B R b r
[2] [18 [s0] [e6] [82 98l [114

= G S rE S e el S

4 D T d t
Wmsmﬁ?mm 100] [116

% 5 E U e u
51 [[37 53 [[[on 117

& 16 _|F__{V __|f __lv
[6] [22] [38 [54 [70] [[102] [118

’ 7 G _1W w
EEEEENsEN N =M

<BS>

[

<HT>

[

<LF>

[0

[1]
[2]

<FF>
<CR>

[13]

<S0>

[

<SI>

[5]

8

9

A

B
C

D

E

F

310

ECMA-94 Latin 1

118

v

119

W

122

2

126

n
[94] [110

~

IFMI'W][Wmm ! 125

(0] (o}
[63] [79] — [95 111§127

?

5 E U e u
[37] " [33] [e9] [85] [101 117

o
o

7 G W
ENENaNE

: J Z j
rz2 8l 7l 2 o) [oe
+ H K k
&3] ' [59] l_7§[|—9T 107{123

*

[&]

[21]

[23]

I—ZZ(WBI_SZH[_ﬂX[_sEhW.xm

9 I Y i
[E)I_M— [57] ~ [73] |_831105y121

[26]

<ESC>

[27]

’ < L 1
ol < e P\ e el |

[29]

5 [@ & [

= @

ol el [el et [Ee 8| F e

|
O s D s B s B s I o1 B I I 1

n_ 12 _(B_R_Jb__|r
[2] [78] [34) [0] [es] [82] [98] [114

I s R s R e s e e A O

4 D T d t
s M s s M- e M M Gn

s

& |6 __|F__v__|f
[6l [22| [38 [54 [70] [86] [102

[7]

<BS>

[

<HT>

[9

<LF>

[10]
[1]

<FF>

[12]

<CR>

[3]

<S0O>

4]

<SI>

[15]

8

9

A

c

D

E

F

311

ECMA-94 Latin 1

240

(o}

241

n

242

o

243

6

244

o]

o

245

246

5

247

248

o

249

u

250

a

251

a

252

i

253

¥
b

254

255

¥

224

a

225

a

226

a

227

a

228

5

<]
a

229

230

&

232

e

233

é

234

é

235

a

236

1

237

i

238

1

239

T

208

b

209

210

0

211

0

212

0

0

213

214

8

215 ¢ 231

X

216

@

217

U

218

U

219

4]

220

i

221

¥

222

=

223

B

192

A

194

A

195

A

196

A
A

197

198

y:)

199

¢

200

E

201

E

202

E

203

B

204

I

205

1

206

1

207

§

176

178

179

180

181

"

182

1

183

184

>

185

186

o}

187

>»

188

%

189

3

190

%

191

é

160

162

¢

163

£

164

ol

¥

165

166

167

§

168

169

©

170

a

171

<«

172
[173]

-

174

®

175

144

146

147

148

149

150

151

152

153

154

155

156

157

158

159

128

130

131

132

~ 1133

134

135

136

137

138

139

140

141

142

143

312

ISO 11: Swedish

116

t

118

v

119

w

120

X

122

zZ

i

123

124

B

125

]
a

126

i

WTM{TAF??m 109

?

s O (o}
[63] [79] —[951 [# 127

2_(B_IR_|b__]r
[34] ~[50] [es] [®2] [98] [114

5 E U e u
[37] " [s3] [e9] [8s5] [1o1 117

°
%

7 G W
5l [l o[[#7 ° [es

4

: J 7]
| =8l 7 - [50] > [is
+ : K A k
(@3] '[9 [[o1] [oz

*

(&

[18]

[21]

[23]

s Mk e R

9 I Y i
=1 o L e el

[26]

<ESC>

(7]

< L_16 1
(28] " [w| [e0] [76| [92] [108

[29]

> IN_JU__1n
[30] "[46| [e2| [78] [9a] [110

=/ @

o_J|E__1p__|é
ol el [[e (e o6 [

|
o e el B w5 e i B A

[2]

T S A s s M s
BT B Er I s R T BT

[s

& |6 {F__|v__f
6| [Z2] [38] [54] [70] [&6] [102

[7

<BS>

[38

<HT>

ol

<LF>

[19]
1]

<FF>

[12]

<CR>

[13]

<S0>

[

<SI>

[15]

8

9

A

C

D

E

F

313

US-ASCII

126

~

& 7 s Ml | s

)

f 0] (o]
[63] [79] —[951 [" 127

5 E U e u
[37] [53] [e9] [85] [0 117

o

o\

+ . K k
EEENENG NN

[

[21]

8 H X h X
el 8 el Bl X el P oedd X

9 I Y i
= @2 A el el Y

* : J Z 3 2
[26] [42] [58] [7] [90] ~ [10s] [122

<ESC>

< L 1
[28] ' [« [e0] W\W 108|124

[27]

[29]

e« 1> _IN_ |~ __1n
[30] [46] [e2] [78] [94] [110

=/ &

ol el = el Trel | el P

[}
M 7= s s 2 A s

" _12_IB_JR_|b__|r
[2] [18] [34] [50] [e6] [[98 [11a

i s il s e s s e D

4 D T d t
[4] [_20'$m [52] [e8] [[100] [116

5]

& 16 _|F__ |V _|f__Iv
[6] [22] [38 [54] [70] [86] [102] [118

4 7 G_ | W w
7 = =6 =7 e 2 fesl Y s

<BS>

[g]

<HT>

[9]

<LF>

[0

[11]
[12]

<FF>
<CR>

[13]

<S0O>

[

<SI>

[15]

8

9

A

B
C

D

E

F

314

ISO 61: Norwegian

118

v

125

]
a

n
[94] [110 | 126

-~

WMWAI_%‘I“ 109

?

Z (0] (o]
[63] [79] —[9o51 [W 127

5 E U e u
[371 " [53] [e9| [85] [101 117

[
%

+ H K E k ®
a3l '[9 [75] [o1] [oz| [123

[

[21]

8 H X h X
[—2?([? [56| [72] [88] [104 120

9 I Y i
1_25—)[7 [57] ~ [73] [_89_1105y121

*x | lg_lz_ 13 __lz
[26] [&2] [58] [74] [90] ~ [106] [122

<ESC>

[27]

y — < —L 10 11 __1o
(28] ' [wl [e0] [76] [92| [108] [124

[29]

ol [@ el [

G/ @

ol el 5l e el el Pl

1
T O A 3 Bl = 3 o B I I

w_12_|B_|{R_|b__JIr
[2] [8] [34] [s50] [es] [82] [98] [114

C S
o e M S A M 05

4 D T d t
[4 [_23$|_35 [s52| [e8] [8] [100] [116

[s

& 16 _|F__|V_1f
6] [22] [38 [54 [70| [8 [102

’ 7 G __|W w
s S e s A

<BS>

[38

<HT>

[9]

<LF>

0]
[11]

<FF>

[12]

<CR>
<S0>

[
(4]

<SI>

5]

8

9

A

C

D

E

F

315

I1SO 4: UK

[126]

n
[94] [110

-~

WMIT]W?mm}fE

-

'IFOW—ITSOM%W

"5 el P el e 2 el Y

5 E U e u
[37] " [53] " [e9l [85] [101 17

P>
o

7 G W W
ENENaNEE N

4

+W;WK[?[W}{107{[E

[17]

[21]

[23]

8 H X h X
2 el @ el Bl X sl P oedl X

= @A = = s sl Y

* 1 _1J__12_ 17 1z
[26] [42] [58] [74] ['90] = [108] [122

<ESC>

[27]

NN M

& [&
(30| " [@| &l [

=/ @

1o el e el el el P

[

" 2 B R b r
[2| [8] [34] [s0] [es] [®82] [98] [114

£ _13 _1C__1S __|lc___1s
[3] [ol " [35] [51] [er] [83] [99] [115

4 D T d t
[4] [‘Esm [52] [e8] [8] [100 116

5]

& 16 __|F_|{v__1f__|v
[6] [22] [38] [54] [70] [86] [102] [118]

[7]

<BS>

[8

<HT>

[9]

<LF>

9]
1]

<FF>

[12]

<CR>

3]
[

<SO>
<SI>

[15]

8

9

A

B
cC

D
E

F

316

ISO 69: French

120

X

124

a

126

n
[94] [110

~

P
real [l X o8 F

a

M m é
[[61] I?SW 109 125

2

7 0 (o]
&3l [79] —[95] [g127

5 E U e u
[37]1 " [531 [e9] [8] [101 117

[
)

+ ; K ° k é
[43] ' [s9] [75] [o1] [wo7] [123

[

21}

s M ks e AT

9 I Y i
5 Il I i Bl i Bl Bl T R P

* : J Z 3 z
[26] [42| [58] [74] [90] ~ [108] [122

<ESC>

[27]

’ < L 1
(28| ' (72 [[7e] © [32 ~ [ios

[29)

56 (@ [& [

=/ &

(5l [[%] (@

1
o B s B s B s R) B M R E
A e R s e e T

£ 13 __J|Cc _ 1S __Jc__1s
3] [9] [35] [51] [er] [83] [99] [115

4 D T d t
[4] I'Esl_ﬁ [52] [e8] [8] [100] [116

[

& |16 |F__|Vv_1£f __|v
6] [22]| [38 [54 [70] [8] [102] [118

’ 7 G ___|W w
7 = [[A [e s

<BS>

[8]

<HT>

[9

<LF>

[0

1]

<FF>

[12]

<CR>

[13]

<SO>

[

<SI>

[15]

8

9

A

cC

D

E

F

317

ISO 21: German

M U m i
[61]l " [77] [93] [109 125

-

[6] o
[63] [79] —[9s] [§127

5 E U e u
[37] " [53] [e9] [8] [101 117

)
%

*

: J Z j z
[42] [58] ~ [74] I_9FJ106 122

; K A k i
(%3] '[9l [7s] [o1] [o7] [123

+

%]

[21]

H
= ol @ sl el X el P eal X

= A 7 = sl sl Y s

[2¢]

<ESC>

[27]

< L 0 1 o)
[28] ' [a4l [eo] [76] [92]| [108] [124

[29]

e 4> IN_|~ _In_ |8
[30] [46] [e2] [78] [94] [110 126

=1/

-
o 7 5 @ S el T el el P

]
1 7 =@ s e e A

e B I s v R e B
e Rl e 5 e s e s D s B

‘ 4 D T d t
[4] |—za$r¥ [52] [e8] [®&| [100] [116

[5]

& |16 __JF__ 1V __1f__1v
[6] [22] [38 [54] [70] [86 [102] [118

4 7 G_ W w
EEEEENsENaNEEEND

<BS>

8

[

<HT>

[

<LF>

[10]
[1]

<FF>

[12]

<CR>

[13]

<S0>

(72

<S>

5]

9

A

C

D

E

F

318

HP Spanish

119

w

126

n
[9s] [110

[}

M S m
a1l [77] © [%3 109}125

-

2 (¢ (o]
[63] [79l —[95] [1m & 127

5 E U e u
[37] " [53] [e9| [85] [101 17

%

[~

7 G W
5| [7l [[

14

+ ; K i k
s R e e o i el N

]

[21]

[23]

8 H X h X
A e A R R R R

o M e ko R e o R

*x |l _1J_Jlz_ 13 1z
[26| [z [58] [7| [90| ~ T1oe] [122

<ESC>

27

< L N 1 ol
[28] ' [«| [60] [76] [92] [108] [124

[29]

0 [@l [

=/ @

; -
ol el 32 Ol ek [m8] [8| b2

|
o B s e B I B s N

n 2 IB_|R_|b
3 [8l [o [50)[es e [38 [

IR EE o A e A v e D e

4 D T da t
[4] msl_y? [52] [e8] [84] [100] [116

[5]

& 16 _|r Vv _1f __1vVv
[_Z[_z?lﬁ[ﬁml—@wzm

7

<BS>

[8]

<HT>

[9]

<LF>

0]
[1]
[12]

<FF>
<CR>

[13]

<S0>

4]

<SI>

[15]

8

9

A

Cc
D

E

F

319

ISO 57: Chinese

126

n
[94] " [170

-~

: J Z] z
(58l " (7] “ [0l 2 [08] - [122

[FM[T]['Em-uw ! 125

‘15 el P el U A A

5 E U e u
[37] [s3] [l [®85] [101 117

o
o

@]

*

+ H K k
N NN

(&

[17]

[21]

= 1wl 8 e P X el o X

E)WQWI[_BYWlmSYQM

[26

<ESC>

[27]

, < L 1
=8l S el e N e e |

[29]

(30| " [@| [& [

W/W?WOW—Wom%n?

o el 3 Ol el D el e P

I_T

n_12_1B_|R_|b__|r
[2| [78l [34] [0l [e6] [82] [98] [114

I el 3 Il 5 s 5 e I

¥ _ |14 _|D_|T _14_|t
4] [20] [36 [52l [s8 [l [100] [116

[s

& |6 _JF__ |V __1f _1v
6] [22] [38 [54 [70] [86 [102] [118

! 7 G _ | W A
7 3 oA L el e

<BS>

[8

<HT>

[9]

<LF>

[10]
[11]

<FF>

[12]

<CR>

[13]

<SO0>

[

<Si>

[15]

8

9

A

C

D

E

F

320

ISO 17: Spanish

o

123

126

~

~

n
[94] [110

M S m
&1l [77] © [93] 109(;125

)

s 0] o
[63] [79] — [95 111§127

5 E U e u
[37] " [53] [eol [85] [101 117

o
)

+ ; K i k
[/ 590 [3] ' [o1] [io7

(5]

[21]

8 H X h X
el (el © el P X e e K

R e s Bl e B s e 5 A P

* | __|1J_12_ 13—z
[26] [42| [58] [74] [90] ~ [106] [122

<ESC>

[27]

< L N 1 i
[28] ' [4| [e0] [76] [92| [1o08] [124

[29)

6 @ el [

=i/ &

(5l [[3] f@ Sral e [%8 5[

!
S s s A s e A A O

" 12 IB_IR_1b__|r
[2 [18] [34 [50] [es] [&2 [98 [114

£ 13 _JC_|1S_Jlc__1s
3] [9] [35] [511 [er] [&3] [99] [115

4 D T d t
[4 msl_sg [52] [e8] [8& [100] [116

[5

& 16 __|F_ |V _J1f __1v
[6] [22] [38 [54 [70] [86] [102 118

4 7 G_|W W
= & % AL [E o e [

<BS>

[

<HT>

[9]

<LF>

[10]
[1]

<FF>

[12]

<CR>

[13]

<SO>

[

<SI>

[15]

8

9

A

C

D
E

F

321

ISO 2: IRV

126

: J Z j b4
[58] [74 ijb 122

ITMIT]WmW) } 125

0 o]
[63] [79]l —[95] [i 127

-

5 E U e u
[37] " [53] [e9] [8] [100 117

°

o\

(@]

*

+ H K k
& s V= e e s

[&]

[21]

8 H X
[T(I_E [56] [72l [tht.xwo

= = = e e Y

[26|

<ESC>

[27]

< L 1
Rl e R A

[29)

e 1> _IN_1° _In
[30] [46] [62] [78] [94 "[110

Mk

o el 52 el el T el e P

[}
1 I s el o B i e e B 2 I

" 12 __{B_|R_1b__Ir
[2] [78] [34] [0l [es] [[98] [114

e I Al o a5 D s A N N

n__ 14 __|D__JT__{d_Jt
[4] [20] [36] [52] [esl [8] [100] [116

5]

& |6 _JJF_ IV _1f__1v
6] [22] [38 [54] [70] [86] [102] [118

4 7 G __ | W w
= = [6o (e el [

<BS>

[8

<HT>

[9]

<LF>

0]
1]

<FF>

h

<CR>

[13]

<S0O>

[74]

<S>

[15]

8

9

A

C

D

E

F

322

ISO 10: Swedish

116

t

117

u

118

v

122

A

123

5

124

8

126

n
[9a] = [110

-~

WMWAWm 109 a 125

-

f 0] (o]
(&3l [79] —[9s] [§127

2 _{B_ R __|b__Jr
[34] “[50] [es] [®2] [98] [114

5 |E_{U__Je
[37] " [53] [eo| [8s] [101

o

o\

: J Z]
a2 ° Gl 7] 59 2 [o8
+ : K A k
(&3] '[9 [75] [o1l [z

*

[&]

8]

[21]

’ 7 G W A
= [[[A] e [[

8 H X h X
] (el 8 el) " e e [
9 I Y i
5 R s el s A s I T R P

[26

<ESC>

[27]

< L_106 1
(28] ' [« [e0] [76] [92] [108

[29]

[[@ & [

=

5 e [el ml [P

]
o IO i sl = i o= Il I B 7 B

2]

= m EE T s s

R En e M e R A

[5]

s le _|F__|Vv__1If
6| [22| [38 [54 [0 [8e [102

[7]

<BS>

[

<HT>

[9]

<LF>

0]
]

<FF>

[2]

<CR>

[13]

<S0>

[

<SI>

[15]

8

9

A

C

D

E

F

323

ISO 16: Portuguese

126

]

n
[94] [110

M 0 m o)
[e1] [77] [93] [109] ~ 125

& 7

>

)

? o] o
[63] [79] —[95] [ﬁ127

5 E U e u
[37] [53] [e9] [85] [101 117

)
%

+ ; K A k a
[43] ' [59] [7s1 [91] [ro7] ~ [123

(&
" [48

[21]

8 H X h X
[24] ([40] [56] [72] [e8 104 120
9 I Y i
[25)I—F [57] [[® 105y121

* : J Z 3 z
[26] [42| [58] [74] [90] ~ [106] [122

<ESC>

[27]

[28] ’[7<[W.L17CI'32—1 108 ¢ 124

[29]
[30]

=/ @

5 e 5 (@ el [l 56 F

|
L s A S R LR
" 2 B R b r
[2] [18] [3&] [0 [es] [82 [98 [114

e s s e s e D s

4 D T d t
[4] Wsl_s—e [52] [e8] [8] [100 116

s

& |16 _|F_V_|f __|v
[6] [22] [38 [554] [70] [88] [102] [118

! 7 G _ W w
7 = 36 o e 2 el s

<BS>

[g]

<HT>

9]

<LF>

[10]
[1]

<FF>

[12]

<CR>

[13]

<S0>

7

<SI>

[15]

8

9

A

c

D

E

F

324

ISO 84: Portuguese

117

u

118

v

119

w

120

X

122

Z

123

a

126

n
{94 [110

~

M 0 m 6}
[61] [77] [93] [109 125

g 0] o]
&3] [79l —[95] [i 127

)

2 _IB_JR_Ib__I¥T
(34 " [50] [es| [[98] [114]

5 |E_ 10U _le
[37] " [33] [e9] [&s| [101

°
S

7 G W
M5l 55 [[e7] > i3

4

+ H K A k
(@3l [59 [75] [o1] [or

(]

[18]

[21]

[23]

ml 1l 8 e Pl R e s

9 I Y i
[—2?)[71_. [57] [73] 891105y121
* : J Z 3
[26] [%2| [58] [74] ['90] ~ [106

<ESC>

[27]

’ < L 1
58l ’ [l a0l = 76| * [52] [ro8] < [1ae

[29]

(5 " [@ & [

i/

o_ |- _jip__|°~
ol (56 [[[l [w0] [56]F [

i
o I e Il B s o B = Bl 2 I

[2]

o T e el s = e e I

4 D T d t
[4] l’%’$r§ [52] [e8| [8] [100] [116

[5]

& {6 JF__|Vv__If
[6] [22 [38 [54] [70] [86] [102

7]

<BS>

[

<HT>

9

<LF>

[10]
(1]

<FF>

2]

<CR>

[13]

<S0>

[

<SI>

715

8

9

A

C

D

E

F

325

ISO 85: Spanish

123

-

126

M m
[T61] Wgﬁ? 1099125

)

Fs (0] (o]
[63] [79]—[95] [% 127

5 E U e u
[37] [53] [e9ol [@&s] [0 117

[}
c

@ 61 55l el < e

+

(%

[21]

8 H X h X
] a8 el Bl X el B e X

9 I Y i
[?)[7 [s71 = [73] [Elwsym

* 1 1T _1zZ2_135 |z
[26] [42] [58] [74] [90] © [106] [122

<ESC>

[27]

< L N 1 n
[28] ' [«&] [0 [76]l [92] [108] [124

[29]

. > N s n "
[30] " [48| [[78 ¢[%] [110

I?/w

ol e 32 @ e el e P

o O 3 e e B 3 el s B A
2 8l 3 2 o) el el P el [

o s e s D s R s R o R T

B M N = e Rl e B A s

5

& 6 _|F__ IV __J1f__ v
[6] [22] [38] [54]l [70] [8] [102] [118

! 7 G __1IW w
(7 [6 sl o7 e 2 fesl Y s

<BS>

[8

<HT>

[9]

<LF>

9]
1]

[12]

<FF>
<CR>

[13]

<S0>

4]

<SI>

[15)

8

9

A
B

C

D

E

F

326

Roman-8

116

t

117

u

118

v

120

X

122

A

126

~

n
[94] [110

A

[_6—1M|—77][_9?m1o9 } 125

-

s O o
[63] [79] —[95] [§127

2_1B_JlR_1b__]r
[34] " [50] [es] [82] [98] [114

5 JE _10_le
[37] ~ [53] [e9] [&s| [101

o

+ H K k
%3] ' [59] [?[W 107{123

(&)

8]

[21]

9 I Y i
[25)ITT 571~ [73] [89 105y121
* : J Z 3
[26] [%2| [8] [74] ['90] ~ [106

<ESC>

el ® e P R e e

[27

’ < L 1
e v b N e A

[29]

(el [el [

B

siian e M s My eSO

]
o T B s s 5 e 51 B 3 A i

[

e s B e e s e e s e e A 1
M En s R A

[s

& 6 F v f
6| [22 [38] [54] [70] [8s] [102

4 7 G W w
= = [o nl e o el)

[s
[

<BS>
<HT>

<LF>
0]
[17]

<FF>

[12]

<CR>

[13]

<SO>

[

<Si>

[15]

8
9

A

C

D

E

F

327

Roman-8

Q — o M ~r un e ~ «Q o o - o ~M ~ wn
~r ~r ~r ~r ~r ~ ~r ~F ~t ~r wn wn [Ye] [Ta) wn [Ta)
[4¥] o o o o [aY] o o o [4Y] [3Y] (4] o o o~ o
flah L 2 = | o\ | A AN @ ot M [] 2 +I
~r un 0 M~ -] o o -— o M ~ wn Nel N~ 0 [0
o o o o o o [ng] M [ng] M [ng] ["e] M M M ~M
[4Y] o [4V] o o o o o (4] [4Y] o o o o o o
G [T ' @ Lo} - i~ O 0 QO 10 n)]] Hetl Ho N
[0} o o - o~ M ~r n O N~ (o] (o] (=] — o M
o =) - — -— — — -— -— — — -— o o o o
o o~ o o [4Y] o o o o o o [aV] (o] o o~ N
ot 4 Q K | v L) 8 | < 2 T I @ T (oo T - Q [«©
o M ~r wn el M~ [-¢] o o - o ~M ~ N 0 N~
o o o o o o o o =} =) o o =) o =} =
Lt L — -— — — - — o o o~ o [3Y] N [oY] o
«g @ © fim1 \Q QO \O [ls] o] Q 0 fi=] Hoo B B ()] :0 Hm]
0 N~ © o Q o M ~ n 0 N [-9) o [=}
~ ~ ~ [=] © © © ® o 3] =] © o o
- - - - pact - - st - - - - - - - -
| Wy | oo O O | = e - | - w S @ | O
o — o N ~r wn O M~ © [o — o B ~F wn
Aol 0 O hel O Ne) el O e e} N~ ~ ~ N~ M~
- - - - - - - - - - - — - - - -
" « /M fieal HES) - i \ / ¢ l] '] ud
~ N 0 N~ o] o o — o [oa] ~ [Ta) 0 N 0 (o
~r ~ ~t ~ ~t 3 [Ta} [Ya} N [Tal ["a) wn [Yal [Ta} wn [Va)
- - - - - - - - - = - - - - - -
-] [e) (=4 — o ™M ~3 [Ta) e M~ o] (o) o « o M
o N M N 8] bal M (22} M M M M ~3 ~ ~ ~
- - - - - - pls - s - - - - - - -
o — o~ ™ <t Te} o] ~ 0 (o) < m & (@) €] e

328

IBM-PC(US)

116

t

117

u

118

v

119

w

120

X

122

Z

126

127

O

-~

Rz R R O M

o
B

7 G W
5 [Gs] C[7 [e7° [

[

[29]

‘1 s el - e

)

o ° el s G e P el e P

1
o e B) B = a1 B i A

2 2_|B —JR_Jb__Ir
2 "8 [34] [0 [es] [82] [98] [114

#[_?3[75#[_3—53[_5—1CI—§S[_8§C|—935115
el Er M e M s R M T

5 5 E U e
[5 21 [37 53 69 85 101
& 6 & 6 F v f
6 22 38| [54 [70] [86 102

o

= =
(=18 (ol ® sl e ® e e

I

9 9 I Y i
o s e il a3 I o B - A

Sn e s I e A R
M a0 R M s B I s e e B R =

)

*

r < I < L 1
N e M s N i A

[13]

‘2 [(@ e (7] [e " [

15

/

1

2

3

4

6

7

8

9

A

B

C

D

F

329

IBM-PC(US)

~F ~ ~3 ~t ~t ~r ~F ~r ~r ~r n wn wn un uw n
o o N N o o [4Y] o o o [3Y] o N N o~ o
1} +l Al VI e — o R o > <} ~]
= n 0 ~ o > S po o 9 x n 2 ~ © o
o o o o o o M [Ne] M M M M M M M M
o o o o o o o o o (4] N o o o [4V] o
3 ea) [[N e} 3 b~ 1 [¢)] (o] “o 8 © w C
[e] [o — o~ M ~F n 0 ~ o] o o - o M
=3 & — - — — - — - - - — ~ o o~ o
o o o o o o o~ o o o o o o o N o
= I+ =4 —u . E({==|4]|5 - mm B - .
[a)) M ~F " O ~ [-e] o o - o M ~ [¥s) 0 N~
o o 23 & o o o & 3 S S 3 = S S S
- - [l | + | L= k= | o) =1 =2=1 == | 4l
o ~ © o) o I n v . < o S
~ ~ ~ [2 @ < © 3 © 0 ©] = o o
= = = = 2 X ke 2 _1 2 2 e pat 2 A x
s (B B — | — | | = = — | == | = = | = 3 - -
o [3Y] ™M ~F [7a] 0 [o] [o o ~r
vt o S o S)] O bve]) ~ ~ ~ KR ~ i
2 2 2 2 2 3 2 2 o 2 = = = _1 = _1
\@ (el O {e] l ol) L [AN AT - M N
~r wn o] [+ o — o M ~3 wn el N~ -] o
3 o 3 2 o o L A e o o A & \n
] 8 kg :0 o Vs] > | O D O W e oty Yy
=) o) o~ 3 n © ~ © o = - o~ M
& & M M "M M] " » " 3 NS <3 &
& & Q0 2 2 bt b s bt 2 2 3 3 3
O «@ : | e | o
(@) (] = Fry

330

IBM-PC(Denmark/Norway)

116

t

117

u

118

v

120

X

126

127

O

~

I—éTMIT][_ﬁmW} 125

[&]

9 9 I Y i
9 [’E)[_F [s71 ~ [[89) 105y121

[29]

'ﬁT/I—Z??I_éiO[_ﬁ—Wom

-

. -
3 °ral 3 e G el Tl 6| P

|
ot o s Bl = i = el I B 2 I

=12l e 2 el B el N e [
s I sl e e s s e o e B
e M i A T

5 % 5 E U e
5l " [=z1] [37] [53] [e9] [ss5] [101
& 6 & 6 F v f
6| [22| [38 [5& [70] [86] [102

o

7 ' 7 G W
o Il e B 3 I o ol A 1
8 8 H X h
(B e e el [

4

)

* |l _|*x 1 1T _ 412 _ 17—z
(0] " [26] [%2] [58| [7&| [0~ [106] [122

o A s B Bl Al o 1 A

’ < ’ < L 1
2 < 8 el e Ml) &l |

[13]

e 4> d . —4>—N n
[a| [30] [«6] [e2| [78] [94] [110

15

/

1

2

3

4

6

7

8

9

A

B

C

D

F

331

IBM-PC(Denmark/Norway)

(=] — N M ~t wn O N~ o« [o] o -— o M ~ wn
~r ~F ~r ~F ~t ~F ~r ~r ~r ~ ["a] wn un un [7a) wn
o o [3Y] o~ o (4] o~ o o o o~ o o ~N o o
Hl +I Al Vi e —_— o R [} . > o ~ ™
~F [T 0 N~ -] o o - o M ~3 wn O N~ o] o
(Y] o o o od o M M M M [\a] M M M M M
(4] o~ o o [aV] [aV] o o (oY) o [4V] o o (4] o o
3 sa} _.l. [W o 3 -~ =] @ (o o 8 < w C
[o0] (o] o L o 2] ~r w 0 ~ -] o o «— o [\g]
=} o — — — — - — -— — — — o~ o ol o
N o o (4] o o [4Y] o o o o o [aY] o~ o (4]
= I+ = | = -4 L El=s=|4 |- L N o ™ (B
N M ~F [T 0 I~ © [o — N M ~ wn el M
[« [, (o) [s) o o) (¢ [} o (=) o o [en] [=) o o
L - — — L — — - o o o o o o o ol
~ - =+ I + | A=A L= | 5 =|==11 == |
O ~ o] (s (=] Lo o M ~3 n 0 N [0} [o «—
M~ N~ ~ N~ [co] @ [} e} [o] [Ce] [+ -] «Q [ce) o [o)
= - - = 2 & b 2 = 2 = 2 2 pa z e
wu | B (M| — | — | — | = = | s] = = | = = -n —
[=] o M ~r [Fa 0 M~ (o] o o ~F [7al
2 o 0 o sy 0 o o ? o ~ ~ ~ _.m N 2
2 = b b - 2 - hd = b - = = - - -
\g v 0 3 i vz 0 (@] - «g = EN) o - “ ot
~ 0 0 N -] o o -— o [\a) ~t [7a] O N~ -] [
~3 ~ ~r ~r ~ ~r w0 [¥a} wn wn [Ta) wn wn wn un un
3 s bl 3 = S 2 2 A & =i 2 o 2 = 2
Yea) 8 < O lo|lo |ao|o|>]0|Do 8 | w8 = ~
[~ o] [o) Q - o M ~r n O N~ -] (] (=) - o [aa]
[4Y] o M M M] M [l M M M ™M ~3 ~r ~ ~F
- = = 2 = 2 = = = 2 = 2 2 3 st =
O | 3 \Q «O Htol g oft O Q@ Hoj o) Hol «! ~ | o
o — ~ ™ <t n e} ™~ o0 (o)) <L m O (] = (=3

332

PC-850

126

WMI—ﬁ]WmW}mS

)
)

[&]

! A
o o e el o Bl > e B i A i

[29]

? / ? 0 o o)
[31] " [a7] [e3] [79] —[95] [111 127

)

o ° el 5l Pl el el o6l P

[1

[1]
e M e e s R M o
#|_33[T9.#[_¥3I?CWS[_8§CWS”5

e e M e N e o e A M G

| 5 5 E U e u
| 5 I 21 | 37 53 I 69 | 85 101 117
& 6 & 6 F v £ v
6 l 22 I 38 54 I 70] 86 |102 118

o
)

S s e M el 5 A
(I_BSIW([TESWHWXF%thm

14

e A s Rl v s Bl e R Bl i R

: * : J Z j
10 26| [42] " [76| ~ [90 I 1ol % =

+ ; + ; K k
[' [27 53] ' [59 |75[|91 107{123

*

I < I < L l
2 <3 el P\ e el |

[13]

e d> 1, 1> IN__|~ _1In
[a] " [30] [4s] [e2] [78] [94] [110

15

/

1

2

3

4

5

6

7

8

9

A

B

cC

D

F

333

PC-850

o — N M ~ 0) I~ 7] o =) — o) < n
~ ~t ~t ~r ~r ~t ~F ~ ~t ~r [Ta) n 7] ["s] un [Te]
o N [3Y] o [aY] o o _.|?|.. o ~N N o~ o o8 o (4]
| +l] e [7] o 4 o - @ ~ n
< 5) ~ [o o - o~) < N 0 ~ 0 o
o N o~ o~ o o M [\e] M M M M M M M ~M
o oN ™~ [aY] N o o~ [aY] o o o o N o [aY] [4Y]
O sa «© «©Q 0 O 3 o fah w o o wyoow ! \
-2} o o -— o M ~r wn ~0 N~ [s] [+ 3 (=) - o [ng]
L O © - — — - — - — — - - (Y] o o o
[4Y] o N o [3Y] o o N o [aY] oN (9] [4Y] o~ o o
QO [n)] fisa) He9] MM — - - H = N | B -+ []
o ™ s N O N~ © 'y o — o) < \n 0 N~
o o o (=) [e] (o) (o (=) o o [=] o o o o
s — - — - - — — o o o o o o o o~
- |4 Fl—] 1 |4+]|w|w |2 | =2] E]|2|1I |3=]|n=
O N oo o o — o M ~t w 0 N] o =) —
~ N~ _” ~ =] © © ©] =] Q © © © <3 o
- - - - - - - - - - - - - - - -
wn |28 B — | | < | | |oe |s=|l=| r|= |O|»]|
(=2 o M ~r [Ta) o] [o} [+ o o ~r wn
el o 2]] vy o] 0 3) ~ ~ ~ _.m ~ K
- - - - - - - - - - - - - - - -
g v W0 3 [l {14 o ol) @) = [N - M 2
< n 0 N 0 o o — o~ ™M 3 N) N) o
~3 ~3 ~F ~r ~ ~ g wn n wn [Ya} wn n [Ta} [Ya) wn
- - - - - - - - — - - - - - - -
e) i «© 0 © fi=] Vo He T - @ I] e (& o X Yy
© o o - o M ~ N 0 N 0 o =) —] M
o~ N !) M M) M M M M M < < & &
- - - - - - - — - - - - - - - -
O Ho] \Q «g His i oG (6% «@ 0 QD Hal « 1 < ot}
o — o~ ™ < To) \o) r~ 0 (o) < M Q A 3] c]

334

7.3 Resident font samples

PCL5 fonts

Courier 12-point (10 cpi)

lingssgr ()*+,~-./0123456789:
; <=>7?@ABCDEFGHIJKLMNOPQRST
UVWXYZ[\]~_ ‘abcdefghijklmn
opgrstuvwxyz{|}~#

Courier Bold 12-point
(10 cpi)

IVHS%& () *+,-. /0123456789
; <=>2@ABCDEFGHIJKLMNOPQRST
UVWXYZ[\]~ ‘abcdefghijklmn

opgrstuvwxyz{|}~#

Courier Italic 12-point
(10 cpi)

InFSS&7 () *+,~-./0123456789:
;<=>?@ABCDEFGHIJKLMNOPQRST
UVWXYZ[\]~_ ‘abcdefghijklmn

opqrstuvwxyz{ | }~&

Courier 10-point (12 cpi)

L "#S%&’ ()*+,-./0123456789: ;<=>7?
Q@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]"
_‘abcdefghijklmnopqrstuvwxyz{l}

5

Courier Bold 10-point
(12 cpi)

1" #$%&" ()*+,~-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ([\]"
‘abcdefghijklmnopqrstuvwxyz{|}

Courier Italic 10-point
(12 cpi)

I"#SY& () *+,-. /0123456789 ;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]"
‘abcdefghijklmnopqrstuvwxyz{|}

Line Printer 8.5-point
(16.6 cpi)

1NESYR! ()*+, - . /01234567891 ; <=>7@ABCDEFGHI UK
LMNOPQRSTUVWXYZ [\]”_‘abcdefghi jk Lmhopgrstuv
wxyz{|3}-§

Univers Medium

1"#$%&"'{)* +,-./0123456789;; < =>7?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ
\]*_‘'abcdefghijklmnoparstuvwxyz{|} ~

#

335

Univers Medium Italic

1"#8%&'()*+,-./0123456789:; < =>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ
NI _‘abcdefghijkimnopqrstuvwxyz{|} ~

88

Univers Bold

1"#$%&'()* +,-./0123456789:; < = >?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ
[\]*_‘abcdefghijkimnopgrstuvwxyz{|} ~

#®

Univers Bold Italic

I"#8%&()* +,-./0123456789:;, < = > ?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ
[\U" ‘abcdefghijkimnopqrstuvwxyz{|} ~

#

CG Times

1"#$%&’()* +,-./0123456789:; < = > 1@AB
CDEFGHUKLMNOPQRSTUVWXYZ[\]* *
abedefghijklmnopqrstuvwxyz{ |} ~¥§

CG Times ltalic

"#8% &’ ()*+ ,-. /0123456789:; < = > ?@AB
CDEFGHIUKLMNOPQRSTUVWXYZ[\]" ‘ab
cdefghijklmnopgrstuvwxyz{| } ~ &

CG Times Bold

1"#$%&’()*+,-./0123456789:; < = > ?@AB
CDEFGHIJKLMNOPQRSTUVWXYZ[\}*
_‘abedefghijklmnopqrstuvwxyz{ | } ~38

CG Times Bold Italic

U8B &’()*+,-./0123456789:; < => ?@AB
CDEFGHIJKLMNOPQRSTUVWXYZ[\]" ¢
abcdefghijkimnopgrstuvwxyz{| } ~$&

336

Truelmage fonts

Arial 1"#3%8&'()*+,-./0123456789:,<=>?@AB
CDEFGHIJKLMNOPQRSTUVWXYZ[\A
_‘abcdefghijklmnopgrstuvwxyz{|}~

Arial Bold I"#$%8&°()*+,-./0123456789:;<=>?@AB
. CDEFGHIJKLMNOPQRSTUVWXYZ[\]*
_‘abcdefghijkimnopgrstuvwxyz{|}~

Arial Bold Oblique V"'#8%&°()*+,-./0123456789:;<=>?@AB
CDEFGHIJKLMNOPQRSTUVWXYZ[1]*
_‘abcdefghijkimnopqrstuvwxyz{{}~

Arial Oblique I"#8%& ()*+,-./0123456789:,<=>2@AB
CDEFGHIJKLMNOPQRSTUVWXYZ[\]*
_‘abcdefghijkimnopqrstuvwxyz{[}~

Arial Narrow "#3%8 () +,-./0123456789:;<=>?@ABCDEFGHI
JKLMNOPQRSTUVWXYZ[\]*_'abcdefghijkimnop
grstuvwxyz{[}~

Arial Narrow Bold I"#$%8()*+,-.10123456789:,<=>?@ABCDEFG
HIJKLMNOPQRSTUVWXYZ[* ‘abcdefghijkl
mnoparstuvwxyz{[}~

Arial Narrow Bold Oblique 1"#8%&’()*+,-./0123456789.;<=>?@ABCDEFG
HIJKLMNOPQRSTUVWXYZ[\]*_‘abcdefghijkl
.| mnopgrstuvwxyz{|}~

Arial Narrow Oblique I"48%&()*+,-./0123456789:,<=>?@ABCDEFGHI
JKLMNOPQRSTUVWXYZ\}"_‘abcdefghijkimnop
grstuvwxyz{l}~

Century Schoolbook Bold "#$%&' () * +,-./0123456789:;<=>2@AB
CDEFGHIJKLMNOPQRSTUVWXY
-Z[\]"_‘*abcdefghijklmnopqrstuvwx

yz{|}~
Century Schoolbook Bold I"#8%&()*+,-./0123456789:;<=>2@A
ltalic BCDEFGHIJKLMNOPQRSTUVWX
YZ[\]"_‘abedefghijklmnopgrstuvw
xyz{| }~

337

Century Schoolbook Italic

I"#8%& ()*+,-. [0123456789:,<=>@AB
CDEFGHIJKLMNOPQRSTUVWXYZ/
)" _‘abedefghijklmnopgrstuvwxyz{ | }~

Century Schoolbook Roman

"#3%& ()* +,-./0123456789:;<=>7@AB
CDEFGHIJKLMNOPQRSTUVWXYZ|
\]"_‘abedefghijklmnopqrstuvwxyz{ |}~

Courier

L #SR&’ () *+,-./0123456789:;<
=>?@ABCDEFGHIJKLMNOPQRSTUVWXY
Z[\]"_ ‘abcdefghijklmnopgrstuv

wxyz{]}~

Courier Bold

trises’ () *+,-./0123456789: ;<
=>?@ABCDEFGHI JKLMNOPQRS TUVWXY
Z[\]1* ‘abcdefghijklmnopgrstuv
wxyz{]}~

Courier Bold Oblique

1"#$%&’ ()*+,~-./0123456789:,<
=>?@ABCDEFGHIJKLMNOPQRSTUVWXY
Z[\]*_‘abcdefghijklmnopgrstuv
wxyz{/[}~

Courier Oblique

1"#$%& " ()*+,-./0123456789:;<
=>?@ABCDEFGHIJKLMNOPQRSTUVWXY
Z[\]" ‘abcdefghijklmnopgrstuv
wxyz{]}~

ITC Avant Garde Gothic Book

P'#8%8& ()*+,-./0123456789:;<=>? @AB
CDEFGHUKLMNOPQRSTUVWXYZ[\]"
‘abcdefghijkimnoparstuvwxyz{ | }~

ITC Avant Garde Gothic Book
Oblique

I"#8%& () *+,-./0123456789: <=>?@AB
CDEFGHIUKLMNOPQRSTUVYWXYZ[\]"
‘abcdefghijkimnopaqrstuvwxyz{ | }~

ITC Avant Garde Gothic Demi

P#S%&% ()*+,-./0123456789:;<=>7@AB
CDEFGHIJKLMNOPQRSTUVWXYZ[\]" ‘
abcdefghijkimnopqrstuvwxyz{| }~

ITC Avant Garde Gothic Demi
Oblique

I"#8%& ()*+,-./0123456789:;<=>?@AB
CDEFGHIJKLMNOPQRSTUVWXYZ[\]" '
abcdefghijkimnopgrstuvwxyz{| }~

338

ITC Bookman Demi 1"#8%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVW
XYZ[\]"_‘abcdefghijklmnopgrstuv
wxyz{|}~

ITC Bookman Demi Italic I"#S%8'0*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVW
XYZ[\]"_‘abcdefghijklmnopqrstuv
wxyz(| j-

ITC Bookman Light "#8%&'()*+,-./0123456789:;<=>?2@

ABCDEFGHIJKLMNOPQRSTUVWXY

}Z[\]"_‘abedefghijklmnopqrstuvwxyz{
I~

ITC Bookman Light Italic 1"#8%&)*+,-./0123456789:;<=>2WA
BCDEFGHIJKLMNOPQRSTUVWXYZ[
\J* ‘abcdefghijilmnopqrstuvwxyz{| }

ITC Zapf Chancery Medium "# 8% () +,-./0123456789:,<=>(C@ABCDEFG
ltalic HIIKLMNOPQRSTUVWXYZ(N]" _‘abcdefghijk
Imnopgrstuvwxyz{ |~

ITC Zapf Dingbats N S (N0 B S P S =7 - Vg
KR X XAt IRl eofedr 4 & A LrOR #
P e & ake ES IS 2 3 Tiesd e 1 « T S
e FxAKOOMITITAV I

Symbol IWW#3%&3()x+,-./0123456789:;<=>7=ABX
: AEPTHIOKAMNOIIOPETYcQEWZ] . 1L
oPydedpynigkAuvondpotvmoEpl]|}~

Times New Roman 1"#$%& () *+,-./0123456789:;<=>%@ABC
DEFGHIJKL’VINOPQRSTUVW)Q’ Z\® Ca
bedefghijklmnopqrstuvxyz{{}~

Times New Roman Boid "#$% &’ ()*+,-./0123456789:;<=>2@AB
CDEFGHIJKLMNOPQRSTUV WXYZ |
A ‘abedefghijkimnopgrstuvwxyz{|}~

Times New Roman Bold Italic "#8%&’ () *+,-./0123456789:;<=>2@ABC
DEFGHIJKLMNOPQRSTUVWXYZ{[\J™ ¢
abedefghijklmnopgrstuviexyz{|}~

339

Times New Roman Italic

1"H8% & "()*+,- 01 23436789:; < =>2@ABC
DEFGHIJKLMNOPQRSTUVIWXYZ[\ " “ab
cdefghijkimnopgrstinvwxyz{| }~

Zapf Calligraphic Bold

1"#$%&’()*+,-./0123456789:;< =>7@ABC
DEFGHIJKLMNOPQRSTUVWXYZ[\]
" ’abcdefghijklmnopqrstuvwxyz{| }~

Zapt Calligraphic Bold Italic

1"#$%&()*+,-./0123456789:;<=>?@ABC
DEFGHIJKLMNOPQRSTUVWXYZ[\ |*
_‘abedefghijklmnopgrstuvioxyz{| }~

Zapf Calligraphic Italic

"#8% &' () +,-./0123456789:;<=> (@ABC
DEFGHIJKLMNOPQRSTUVWXYZ[\]"_
‘abedefghijklmnopgrstuvioxyz{ | }~

Zapf Calligraphic Roman

" #$% & () +,-./ 0123456789:; < =>2@ABC
DEFGHIJKLMNOPQRSTUVWXYZ[\]"
_‘abcdefghijklmnopqrstuvwxyz{| }~

340

Glossary

Absolute movement

Absolute plotting

Addressable area
Anchor point

Anisotropic scaling

Ascender

ASCII codes

Attribute

Baseline

Bitmap font

Bold

Boolean

Bounding box

CT™™

Movement of the cursor relative to the coordinate
system origin.

Drawing using coordinates relative to the coordinate
system origin.

See logical page.
The top left-hand corner of the PCL picture frame.

GL2 scaling mode where x- and y-axis units can be
of different sizes.

Part of a character that extends upwards above the
level of most other characters. for example the top
parts of a 'k’ or ‘T".

Codes (0-255) identifying alphabetic, numeric and
control code characters.

A characteristic of a font or character.

An imaginary line on which characters lie. Most
characters sit squarely on the baseline, however,
some extend below the baseline.

A font comprised of characters defined as patterns of
dots. Bitmap font characters cannot be scaled.

Thicker type, used to make text more prominent.

A Truelmage variable type that can have two possi-
ble values - true or false.

The smallest enclosing upright rectangle into which a
character will fit.

See Current transformation matrix.

341

Caching

Calling a macro

Cartridge

Cartridge font

Cartridge macro

Character cell

Character code

Character
descriptor

Character set

Clipping path

Column

Control code

Cross-hatching

Storage of character bitmaps that have been calcu-
lated from character definition outlines. Truelmage
performs font caching in order to avoid recalculating
a character’s bitmap pattern every time it prints the
character.

Macro invocation in which any changes made to the
modified print environment are temporary.

A storage medium for fonts and macros that can be
inserted into the printer’s cartridge slot, permitting
the use of more fonts and macros without using up
printer memory.

A font supplied on a cartridge. Cartridge fonts are
available from a number of different vendors.

A macro stored on cartridge. Users can create their
own macros and copy them onto cartridge.

An imaginary rectangular box surrounding a charac-
ter that defines its placement relative to other charac-
ters.

A number that uniquely identifies a character.

A block of data that describes characteristics of a
downloadable font character.

See Symbol set.

The path to which page output is clipped. In Truelm-
age emulation mode, this may be any shape.

A vertical sub-division of the page defined by the
HMI (horizontal motion index). The PCL cursor
moves one column width across the page when a
monospaced font character is printed, or when the
space character of a proportionally spaced font is
printed. See also HML.

An ASCII code that instructs the printer to perform a
particular function, for example a carriage return.

Criss-cross diagonal shading.

342

Current path

Current position

Current settings

Current
transformation
matrix

Current units

Cursor position

Decipoint

Descender

Destination image

Device space

Dictionary

Dot

The path that is currently being built-up by Truelm-
age path operators, and which may be rendered using
paint operators. See also path.

Position in Truelmage user space from which path
definition may proceed.

The settings with which the printer is currently work-
ing, as established by control panel settings and soft-
ware commands.

Matrix that translates Truelmage user space coordi
nates to the coordinates used internally by the printer
device space coordinates.

The currently effective GL.2 coordinate system units
- plotter units or user units. User units are defined
using the SC command.

The position on the current page from which printing
or cursor movement can proceed.

A unit equal to 1/720”.

The lower part of a character, such as a 'y’ or ‘g’ that
extends below the baseline.

Text and graphics that have already been committed
to the page. The LaserJet 1] print model defines the
interaction between the source and destination
images.

In Truelmage mode, the printer’s own internal coor-
dinate system, which is usually transparent to the
user.

A table associating keys (names) with values. True-
Image uses dictionaries to store font data (character
names are associated with the procedures that render
them) and also to associate procedure and operator
names with their actions.

A unit equal to 1/300”

343

Downloadable font

Downloading

Effective window

Emulation mode

Enable for overlay

Escape sequence

Even-odd rule

Factory

default
environment

Fill
Fixed spacing

Font

A font that can be downloaded to the printer from a
host computer. Downloaded fonts reside in printer
memory.

The action of transferring a font, macro or page
description file from a host computer to the printer’s
memory.

A rectangular area on a page within which GL2
graphic output will be visible. The effective window
is the intersection of the logical page. picture frame,
printable area and input window.

A mode in which the printer imitates the functional-
ity of another printer or class of printer.

Macro invocation whereby a macro is run as the final
operation before every page is printed. Overlaid mac-
ros use the settings of the macro overlay environ-
ment.

A sequence of character codes starting with an ESC
character, which is followed by one or more other
characters. PCLS printer commands are implemented
as escape sequences.

A rule that defines whether a point lies inside a path
or not. for the purpose of filling the path. If a line
from the point to another point that lies outside the
path is crossed an odd number of times by path seg-
ments, the original point lies inside the path; other-
wise it lies outside. See also the zero-winding rule.

Printer settings made before the printer is sent out
from the factory. Factory settings can be restored
from the control panel.

Shading applied to a shape or character.
See monospacing.

A collection of characters with common attributes.
Printer fonts may be resident in printer ROM, may be
read from cartridge or downloaded from a host com-
puter.

344

Font descriptor

Font dictionary

Graphics state

Gray scale

Half-tone

Hard clip limits

Hatching
Height

HMI

Horizontal plot size

A block of data describing common characteristics of
a font’s characters.

A TrueType or PostScript font is represented as a dic-
tionary - a table of keys and values that associates the
name of each character with a procedure to render
the character.

In Truelmage mode, a collection of settings that
determine the way in which path construction and
painting operators are interpreted. Graphics states
may be saved and restored.

Shade of gray that ranges from 0%, white, to 100%,
black (HP LaserJet III mode), or from 0, black, to 1,
white (Truelmage).

A pattern of black and white dots designed to simu-
late a gray scale.

The area of the page on which the printer can print
visible GL2 output - equivalent to the PCL printable
area.

Parallel-line shading.

The height of a font measured from the top of the
highest ascender, to the bottom of the lowest
descender. PCL35 fonts are measured in typographic
points(1/727); Truelmage fonts are specified in terms
of the current unit size.

Horizontal motion index. The width of a single col-
umn. This is the horizontal distance the PCL5 cursor
moves across the page when printing a single mono-
spaced font character, or the space character of a pro-
portionally-spaced font. The HMI may be set using
PCL5 commands. See also Column.

The horizontal size of a GL.2 graphic image that is to
be imported. The specification of horizontal and ver-
tical plot sizes allows images to be fitted exactly into
the picture frame.

345

Initial settings

Input window

Internal font

Interpreter

Isotropic scaling

Justification

Label

Landscape

Line attribute

Logical page

Macro

A collection of printer settings consisting of all the
current control panel settings. A software or control
panel reset restores the initial settings, without
changing the current emulation.

A rectangular area, defined by the IW command,
outside which no GL2 output can appear. The input
window is sometimes referred to as the soft clip lim-
its.

A font that is resident in the printer’s ROM, such as
Univers in HP LaserJet III mode or Times New
Roman in Truelmage mode. Each mode has a num-
ber of these fonts, which can be selected at any time
that the printer is in that mode.

The software in the printer that executes the com-
mands in Truelmage page description programs and
any other TrueImage software.

GL2 scaling mode in which x- and y-axis units must
be the same size.

The alignment of text output on the page. Left justifi-
cation aligns the left edge of every line; right justifi-
cation aligns the right edge of every line.

A GL2 text string.

A page orientation that sets the long edge of the page
as the top edge.

Line end type, line join type or miter limit.

The area of the PCL physical page within which the
cursor may be positioned. The logical page can be
repositioned on the physical page.

A sequence of PCL5 commands that the user down-
loads to printer memory or onto cartridge. A single
command causes the macro to be run. There are three
ways of running a macro: calling a macro, executing
a macro and enabling a macro for overlay.

346

Macro execution

Macro overlay
environment

Medium
Miter length

Miter limit

Madified print
environment

Monospacing

Object
Operator

Path

Pattern

Macro invocation in which any changes made to the
modified print environment are retained after macro
execution has finished.

Environment used by a macro enabled for overlay.
The macro overlay environment is a combination of
the user default environment and the modified print
environment.

Type of normal line thickness - used for body copy.

The length of the spike formed by the intersection of
two lines that join at an angle. The miter length is the
distance between the inside and outside corners of
the line join.

The maximum permitted ratio of miter length to line
width. Line joins whose miter length would exceed
the miter lirnit are clipped to a different shape.

Environment consisting of all current HP LaserJet 111
printer settings. If a macro is called or enabled for
overlay, the modified print environment is saved and
then restored when the macro has run.

Font spacing type where each character occupies an
equal horizontal space on a line of text. Courier fonts
are monospaced fonts.

Element in a Truelmage program.
Built-in Truelmage command.

A sequence of connected and disconnected points,
straight lines and curves that defines a shape and its
position on the page. See also subpath, current path
and clipping path

A hatching pattern or gray scale that can be used to
fill a shape or character.

347

Pattern
transparency

PCL

Pen

Perforation skip

Permanent font

Permanent macro

Physical page

Picture frame

Pitch

Plot

Plotter units

Point

The patterned (non-white) areas of a source image
can be either transparent or opaque. If transparent,
the destination image will be visible through any
white parts of the source image’s patterned areas. If
opaque, the destination image will not be visible at
all through the patterned areas of the source image.

Printer Control Language. PCL5 commands control
the printer in HP LaserJet III mode.

Imaginary pen whose movements plot or define
shapes in GL2 mode. There are two pens available -
white and black. A pen must be selected before any
lines can be drawn.

A function prohibiting the printer from printing text
below the bottom margin. Text flows onto the next
page instead. In PCL5 mode perforation skip may be
turned on or off.

In HP LaserJet III mode, a downloaded font that is
retained when a printer reset is performed.

In HP LaserJet III mode, a macro in printer memory
that is retained when a printer reset is performed.

The medium (paper, overhead projection slide or
envelope) on which output is printed.

The area of the physical page within which GL2 out-
put can appear. The size and position of the picture
frame can be set using PCL commands.

The number of monospaced font characters in an
inch of text.

An image rendered by GL2 commands.

The default GL2 coordinate system units. | plotter
unit = 1/1016”.

The standard unit of font height. 1 point = 1/72.27”.

348

Point factor scaling
Point size
Polygon

Polygon buffer

Portrait
Posture
Primary font

Print model

Printable area
Print position

Proportional
spacing

RAM

GL2 scaling mode where x- and y-axis units are
specified as multiples of plotter units. x- and y-axis
units can be of different sizes.

See height.

A shape comprising one or more closed sets of con-
nected lines.

An area of printer memory set aside for storing poly-
gons. Some GL2 commands can reference the buffer
explicitly, while others use it automatically.

A page orientation in which the side edges of the
page are longer than the top edge.

A characteristic of a font. A font can be upright or
italic (oblique).

One of two font definitions that are always main-
tained in PCL mode.

A way of considering the interaction between differ-
ent graphic elements. The HP LaserJet III print
model describes the interaction in terms of a source
image, a pattern and a destination image.

The area of the physical page in which the printer can
place output.

The current cursor position.

Font spacing type in which the horizontal space
occupied by each different character in a line of text
varies according to its design. Univers and Times
fonts are proportionally-spaced.

(Random Access Memory), the printer’s memory.
The printer uses its memory to compose each page of
output before printing it, to store downloaded fonts
and macros, and to store other necessary data, such
as current environment settings.

349

Raster graphics

Relative movement
Relative plotting

Reset

ROM

Row

Sans serif

Scalable font

Scaling

Graphic images made up of successive lines of
zeroes and ones that represent white areas and pat-
terned areas.

Cursor movement relative to the current cursor posi-
tion.

Drawing using coordinates relative to the current pen
position.

A printer reset restores the printer’s initial settings. A
reset may be performed from the control panel or in
software.

(Read Only Memory), the printer’s ROM memory
contains its emulation mode software and the internal
fonts. The contents of ROM cannot be altered from a
host computer.

A horizontal sub-division of the page, defined by the
VMI (vertical motion index). A line feed causes the
PCL cursor to move down the page one row. See also
VML

A typeface normally used for headings, headlines
and other text that is to be prominently displayed.
Sans serif characters lack the small curly hooks (ser-
ifs) that make serif-font body text more readable.

A font comprised of characters defined as outlines.
The user may select the font in any size - the printer
automatically scales the characters to the required
size. Compare bitmap font.

In GL2 mode, setting the size of coordinate system
units using the SC command, to determine the size of
graphic output. Three types of scaling are available:
anisotropic, isotropic and point factor.

In Truelmage mode, setting the ratio of device space
units to user space units, in order to set the size of
output.

350

Scaling points

Scan conversion

Secondary font

Serif

Soft clip limits

Source image

Source
transparency

Stack

Stick font

Stroke weight

The reference points, P1 and P2, which establish the
position of GL2 output. The scaling points can be
positioned using the IP and IR commands.

The conversion of the output described in a Truelm-
age page description to the dot pattern that the printer
applies to the page.

One of two font definitions that are always main-
tained in PCL mode.

A typeface normally used for body text. Serif type-
face characters have small curly hooks (serifs) that
serve to make serif-font body text more readable.

See Input window.

In the LaserJet 1II print model, graphic image that is
superimposed onto the destination image. The cur-
rent source and pattern transparency settings deter-
mine the resultant output.

A source image can be either transparent or opaque.
If transparent, the destination image will be visible
through white parts of the source image. If opaque,
the destination image will not be visible at all
through the source image.

A data structure used by Truelmage to process True-
Image code. The object placed on the stack most
recently must be retrieved first. Truelmage also uses
stacks to store graphics states, virtual memory states
and environments.

The default GL2 font, designed for use in technical
drawings. Stick font characters are comprised of thin
straight lines.

The thickness of character strokes. The normal stroke
weight is Medium. Other common weights are Bold,
Black and Light.

351

Subpath

Sub-polygon

Symbol set

Temporary font
Temporary macro
Text area

Text direction
TIFF
Transparency

Typeface

User default
environment

A series of connected line segments, forming a
shape. A Truelmage path is made up of one or more
subpaths.

A single closed set of connected lines, forming a
shape. A GL2 polygon is made up of one or more
sub-polygons.

A set of printable characters. Character sets usually
include the alphabet in upper- and lowercase, the dig-
its 0-9, punctuation symbols and some additional
characters. There are many specialized character
sets, used for special purposes, such as printing for-
eign language characters.

In HP LaserJet III mode, a downloaded font that is
not retained when a printer reset is performed.

In HP LaserJet III mode, a macro in printer memory
that is not retained when a printer reset is performed.

The area of the physical page on which text can be
printed.

The direction in which text is printed, relative to the
physical page’s orientation.

(Tagged Image File Format), a compressed raster
graphics file format.

See pattern transparency and source transparency.

The design of a font’s characters. Typefaces are
designed so that the individual character shapes work
together to produce visually pleasing, readable text.

In HP LaserJet III mode, an environment that is a
combination of the factory default settings and the
control panel settings. The user default environment
takes effect on power-up in HP LaserJet III mode, or
when HP LaserJet 1II mode is entered from another
emulation mode. The printer can be reset to user
default settings either from the control panel or in
software with the <ESC> E command.

The user-default environment settings are equivalent
to the initial settings.

352

User space

User units

Vértical plot size

Virtual memory

VMI

Zero-winding rule

Truelmage’s coordinate system. User space coordi-
nates referenced in Truelmage page description pro-
grams are translated to the printer’s device space
coordinates.

GL2 coordinate system units specified with the SC
command.

The vertical size of a GL2 graphic image that is to be
imported. The specification of horizontal and vertical
plot sizes allows images to be fitted exactly into the
picture frame.

In Truelmage mode, an area of printer memory in
which the values of Truelmage arrays, dictionaries
and strings are stored. Snapshots of virtual memory
may be saved and restored.

Vertical motion index. The height of a single row.
The horizontal distance that the PCL5 cursor moves
across the page when a single monospaced font char-
acter or the space character of a proportionally-
spaced font is printed. The VMI may be set using
PCLS5 commands. See also Row.

A rule that defines whether a point lies inside a path
or not, for the purpose of filling the path. If a line
from the point to another point that lies outside the
path is crossed an equal number of times from left to
right and from right to left by path segments, the
original point lies outside the path; otherwise it lies
inside. See also the even-odd winding rule.

353

MEMO

354

Index

Alternate font (GL2), 171
Anchor corner, 157

Aunchor point, 117

Array, 201, 208

Array operators, 245-246
Ascender, 24

Automatic downloading, 36

Backspace, 68
Baseline, 24
Binary, 4

Bitmap fonts, 30, 75
Boolean, 201, 208
Bounding box, 217
Buffer, 43

Caching, 214
Catriage return, 67
Cartridge, 2
Cartridge fonts, 33
CD-ROM. 2, 39,75
Character code, 98
Character encoding, 218
Character encoding (Truelmage), 216-
Character features, 24
Character group commands, 171-191
Character spacing, 78
Characters
special, 35
Clipping path, 222
Columns, 69
Configuration and status group commands,
127-138

Control codes, 40, 67, 68
Backspace, 68
Carriage return, 67
Form feed, 68
Horizontal tab, 68
Line feed, 67
Space, 67
Control operators, 253-255
Control panel, 9
setting parameters, 12
Coordinate operators, 280-282
Coordinate system (GL2)
rotating, 136
Coordinate system (PCL), 47
Coordinate system (Truelmage), 198
CTM, 198, 199
Current path, 196
Current settings, 11
Current transformation matrix, 198, 199
Current units, 117
Cursor positioning commands, 6771

(D]

Data LED, 9
Decipoints, 69, 70
Delta row compression, 110
Descender, 24
Device set-up operators, 283
Device space, 198
Dictionaries
errordict, 210
statusdict, 284
systemdict, 206
userdict, 206
Dictionary, 202, 208
Dictionary operators, 249-252
Dictionary stack, 206
Document design, 26

355

Dots, 47, 69, 70
Downloaded fonts, 33, 75

Effective window, 19
Emulations, 2

End of line wrap. 73
ERROR SKIP button, 10
Errordict, 210

Errors, 210

Escape sequences, 40
Execution of objects, 208
Execution stack, 206

Factory default environment, 48

Factory settings, 11

FEEDER SELECT button, 10

File, 203, 208

File operators, 265-269
Fill type (GL2), 158
Filling paths. 220

Font attributes, 27

Font cache operators, 263
Font caching, 214

Font descriptor, 92

Font dictionaries, 214
Font Downloader utility, 36
Font height, 28

Font location, 79

Font metrics, 217

Font operators, 260-262
Font orientation, 79

Font pitch, 28

Font posture, 29

Font selection (GL2), 176-177

Font selection (PCL), 77

Font selection commands. 80-88

Font selection examples, 89

Font selection from control panel, 12

Font stroke weight, 79
Font style, 78

Font symbol set, 29
Font typeface, 79
Font weight, 28

Font width, 29

FontID, 203, 208

Fonts, 23, 211
bitmap, 75
bitmap fonts, 30
cartridge fonts, 33
character spacing, 78
creating, 90
downloaded, 33, 75
downloading, 90

automatic, 36
manual, 36

GL2 alternate font, 171
GL2 standard font, 171
monospaced, 27
PCL fonts, 75
pitch, 78
PostScript type 1, 32, 211
PostScript type 3, 32, 211
primary font, 76
proportionally-spaced, 27
resident fonts, 33
resident printer fonts, 30
scalable, 75
scalable fonts, 30
secondary font, 76
soft fonts, 33
symbol set, 81, 82

Form feed, 68

GL2, 117

GL2 graphics commands, 127

GL2 mode

entering, 122
GL2 pen, 118
GL2 syntax, 123
Graphics (PCL), 101
Graphics (Truelmage), 220
Graphics state, 197, 199
Graphics state stack, 206

Half-tone screen, 220
Hex dump mode, 22
Hexadecimal, 4
Horizontal tab, 68

356

Importing images (Truelmage), 222
Initial settings, 11

Input window, 118, 137

Interface settings, 17

Interpreter, 200

Job control commands, 52-54

Label, 178

Label origin, 179

Line and fill attributes group commands,
157-170

Line end type (GL2), 160

Line feed, 67

Line join type (GL2), 160

Line join type (Truelmage), 274
Line termination, 73

Line type (GL2), 162

Logical operators, 228-230
Logical page, 44

Lost mode, 126

Macro commands, 114
Magcro overlay environment, 51
Macros, 112

defining, 113

running, 113
Manual downloading, 36
Margins and line spacing commands, 62-66
Mark, 203, 208
Maths operators, 225-227
Miscellaneous operators, 271-279
Miter limit. 160, 161
MODE button, 10
Modified print environment, 49
Name, 202, 208

Null, 208
Number systems, 4

0]

Objects, 200, 201-203
execution, 208
ON-LINE button, 9
On-line LED, 9
Operand stack, 204
Operators, 223

P

Packed array, 201, 208
Packed array operators, 247-248
Page definition commands, 55-61
Painting operators, 238-240
Paragraph styles, 26
Path, 196
Path construction operators, 231-237
Paths
filling, 220
Pattern transparency, 102, 103
PCL, 2, 39
programming in PCL, 41
PCL command syntax, 42, 43
PCL coordinate system, 47
PCL decipoints, 69, 70
PCL fonts, 75
PCL graphics, 101
PCL macros, 112
PCL mode
entering, 122
PCL raster graphics, 107
PCL rectangle graphics, 105
Pen, 118
Pen movement
absolute, 118, 140
relative, 118, 141
Pen width, 164
Physical page, 44
Picture frame, 44, 117
Pitch, 28, 78
Plot size, 121, 122

357

Plotter units, 117

Polygon buffer, 149

Polygon group commands, 149-156
Polygon mode, 149
PostScript, 2, 32, 193
Posture, 29

Primary font, 76

PRINT button, 9

Print model (PCL), 101

Print model (TrueImage), 196
Printer Control Language, 39
Printing process, |

Printing to disk, 194
Procedures, 194, 206
PROGRAM button, 10
Program mode, 8
Programming, 41, 125
Programming in GL2, 125

R

Raster graphics, 107
Rectangle graphics, 105
REP, 16

RESET button, 10

Resident fonts, 33

Resident printer fonts, 30
Resolution enhancement, 16
Rows, 70

Run-length encoding, 109

Scalable fonts, 30, 75
Scale command, 132
Scaling
anisotropic, 132
isotropi,c 132
point factor, 132
Scaling a GL2 image, 120
Scaling points, 118
inputting, 130, 131
Screen, 220
Secondary font, 76
Self test, 74
Setting parameters, 12
Soft fonts, 33
Source transparency, 101, 103

Space, 67
Spacing type, 27
Special symbols, 35
Stack operators, 223-224
Stacks, 204-206
dictionary stack, 206
execution stack, 206
graphics state stack, 206
operand stack, 204
Standard font, 171
statusdict, 284
String, 202, 208
String operators, 241-244
Stroke weight, 79
Subpath, 196
Superset commands, 22
Symbol set, 29, 77, 81, 82
Symbol set selection, 81, 82
Symbol sets, 35
Symbols
special, 35
System 7, 31, 193
systemdict, 206

Tagged image file format, 109
TEST button, 10

Text area, 44

TIFF, 222

Transparency mode, 101, 102
Transparency mode (GL2), 168
Truelmage, 2

Truelmage extensions, 284289
Truelmage interpreter, 200
Truelmage operators, 223
Truelmage syntax, 207

TrueType, 2, 31, 32, 193

TrueType fonts
TrueType fonts, 211
Type and attribute operators, 256-258
Typeface, 27, 79
sans serif, 25
serif, 25
Typefaces, 23

358

Units
current units, 117
plotter units, 117
user units, 117
User default environment, 49
User settings, 11
User space, 198
User units, 117
userdict, 206

Vector graphics, 117

Vector group commands, 138-148
Virtual memory, 210

Virtual memory operators, 270

Weight, 28
Windows, 193
Windows 3.1, 31

359

Consumer Response

Star Micronics Co., Ltd. invites your suggestions and comments on your
printer and this manual. Please address your correspondence to:

Worldwide Headquarters:
STAR MICRONICS CO., LTD.
20-10 Nakayoshida
Shizuoka, JAPAN 422-91
Attn: Product Manager

American Market:
STAR MICRONICS AMERICA, INC.
420 Lexington Avenue, Suite 2702-25
New York, NY 10170
Atin: Product Manager

European Market:
STAR MICRONICS DEUTSCHLAND GMBH
Westerbachstrafle 59
P.O. Box 940330
D-6000 Frankfurt/Main 90
F.R. of Germany
Attn: Product Manager

U.K. Market:
STAR MICRONICS UK., LTD.
Star House
Peregrine Business Park
Gomm Road, High Wycombe
Bucks. HP13 7DL, U.K.
Attn: Product Manager

French Market:
STAR MICRONICS FRANCE S.A.R.L.
25, rue Micha¢l Faraday
78180 Montigny-le-Bretonneux
Attn: Product Manager

Asian Market:
STAR MICRONICS ASIA LTD.
18/F Tower 2, Enterprise Square
9 Sheung Yuet Road, Kowloon Bay, HONG KONG
Attn: Product Manager

PRINTED IN JAPAN

	Star - LS-5 EX and LS-5 TT - Applications Manual
	Cover
	TABLE OF CONTENTS
	1. Introduction to the printer
	1.1 The printing process
	1.2 Emulations
	1.3 Fonts
	1.4 User needs
	1.5 Binary, decimal and hexadecimal numbers
	1.6 General advice

	㈀⸀ 䌀漀渀琀爀漀氀氀椀渀最 琀栀攀 瀀爀椀渀琀攀爀
	2.1 On-line
	2.2 Program mode
	2.3 The control panel
	2.4 Printer settings
	2.5 Setting parameters
	2.6 Feeder select
	2.7 Mode
	2.8 Selecting display language
	2.9 Errors and status messages
	2.10 PCL
	2.11 TrueImage
	2.12 Hex dump mode
	2.13 Superset commands
	2.14 Fonts

	3. Fonts
	3.1 Introduction
	3.2 Font attributes
	3.3 Printer fonts
	3.4 Font sources
	3.5 Font selection
	3.6 Special symbols and characters
	3.7 How applications use fonts
	3.8 Conclusion

	4. Printer Control Language
	4.1 Introduction
	4.2 Printer control language commands
	4.3 Command format
	4.4 The buffer
	4.5 The imaginary cursor
	4.6 The page
	4.7 The PCL coordinate system
	4.8 The printing environment
	4.9 General printer control commands
	4.10 Fonts
	4.11 Graphics
	4.12 Macros

	5. Vector graphics
	5.1 GL2 concepts
	5.2 Managing GL2 mode from PCL mode
	5.3 GL2 syntax
	5.4 Programming with GL2
	5.5 GL2 graphics commands

	6. TrueImage
	6.1 Introduction
	6.2 True print model
	6.3 Coordinate systems
	6.4 Graphics state
	6.5 True language features
	6.6 Fonts
	6.7 Graphic effects
	6.8 Operators

	7. Technical supplement
	7.1 Command summary
	7.2 Character set tables
	7.3 Resident font samples

	Glossary
	Index
	Consumer Response

